Metamath Proof Explorer


Theorem psrmulr

Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses psrmulr.s S=ImPwSerR
psrmulr.b B=BaseS
psrmulr.m ·˙=R
psrmulr.t ˙=S
psrmulr.d D=h0I|h-1Fin
Assertion psrmulr ˙=fB,gBkDRxyD|yfkfx·˙gkfx

Proof

Step Hyp Ref Expression
1 psrmulr.s S=ImPwSerR
2 psrmulr.b B=BaseS
3 psrmulr.m ·˙=R
4 psrmulr.t ˙=S
5 psrmulr.d D=h0I|h-1Fin
6 eqid BaseR=BaseR
7 eqid +R=+R
8 eqid TopOpenR=TopOpenR
9 simpl IVRVIV
10 1 6 5 2 9 psrbas IVRVB=BaseRD
11 eqid +S=+S
12 1 2 7 11 psrplusg +S=f+RB×B
13 eqid fB,gBkDRxyD|yfkfx·˙gkfx=fB,gBkDRxyD|yfkfx·˙gkfx
14 eqid xBaseR,fBD×x·˙ff=xBaseR,fBD×x·˙ff
15 eqidd IVRV𝑡D×TopOpenR=𝑡D×TopOpenR
16 simpr IVRVRV
17 1 6 7 3 8 5 10 12 13 14 15 9 16 psrval IVRVS=BasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxScalarndxRndxxBaseR,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
18 17 fveq2d IVRVS=BasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxScalarndxRndxxBaseR,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
19 2 fvexi BV
20 19 19 mpoex fB,gBkDRxyD|yfkfx·˙gkfxV
21 psrvalstr BasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxScalarndxRndxxBaseR,fBD×x·˙ffTopSetndx𝑡D×TopOpenRStruct19
22 mulridx 𝑟=Slotndx
23 snsstp3 ndxfB,gBkDRxyD|yfkfx·˙gkfxBasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfx
24 ssun1 BasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxBasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxScalarndxRndxxBaseR,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
25 23 24 sstri ndxfB,gBkDRxyD|yfkfx·˙gkfxBasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxScalarndxRndxxBaseR,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
26 21 22 25 strfv fB,gBkDRxyD|yfkfx·˙gkfxVfB,gBkDRxyD|yfkfx·˙gkfx=BasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxScalarndxRndxxBaseR,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
27 20 26 ax-mp fB,gBkDRxyD|yfkfx·˙gkfx=BasendxB+ndx+SndxfB,gBkDRxyD|yfkfx·˙gkfxScalarndxRndxxBaseR,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
28 18 4 27 3eqtr4g IVRV˙=fB,gBkDRxyD|yfkfx·˙gkfx
29 22 str0 =
30 29 eqcomi =
31 reldmpsr ReldommPwSer
32 31 ovprc ¬IVRVImPwSerR=
33 1 32 eqtrid ¬IVRVS=
34 33 fveq2d ¬IVRVS=
35 4 34 eqtrid ¬IVRV˙=
36 33 fveq2d ¬IVRVBaseS=Base
37 base0 =Base
38 36 2 37 3eqtr4g ¬IVRVB=
39 38 olcd ¬IVRVB=B=
40 0mpo0 B=B=fB,gBkDRxyD|yfkfx·˙gkfx=
41 39 40 syl ¬IVRVfB,gBkDRxyD|yfkfx·˙gkfx=
42 30 35 41 3eqtr4a ¬IVRV˙=fB,gBkDRxyD|yfkfx·˙gkfx
43 28 42 pm2.61i ˙=fB,gBkDRxyD|yfkfx·˙gkfx