| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s |  | 
						
							| 2 |  | psrring.i |  | 
						
							| 3 |  | psrring.r |  | 
						
							| 4 |  | eqidd |  | 
						
							| 5 |  | eqidd |  | 
						
							| 6 |  | eqidd |  | 
						
							| 7 |  | ringgrp |  | 
						
							| 8 | 3 7 | syl |  | 
						
							| 9 | 1 2 8 | psrgrp |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 3 | 3ad2ant1 |  | 
						
							| 13 |  | simp2 |  | 
						
							| 14 |  | simp3 |  | 
						
							| 15 | 1 10 11 12 13 14 | psrmulcl |  | 
						
							| 16 | 2 | adantr |  | 
						
							| 17 | 3 | adantr |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | simpr1 |  | 
						
							| 20 |  | simpr2 |  | 
						
							| 21 |  | simpr3 |  | 
						
							| 22 | 1 16 17 18 11 10 19 20 21 | psrass1 |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 1 16 17 18 11 10 19 20 21 23 | psrdi |  | 
						
							| 25 | 1 16 17 18 11 10 19 20 21 23 | psrdir |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 1 2 3 18 26 27 28 10 | psr1cl |  | 
						
							| 30 | 2 | adantr |  | 
						
							| 31 | 3 | adantr |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 1 30 31 18 26 27 28 10 11 32 | psrlidm |  | 
						
							| 34 | 1 30 31 18 26 27 28 10 11 32 | psrridm |  | 
						
							| 35 | 4 5 6 9 15 22 24 25 29 33 34 | isringd |  |