Metamath Proof Explorer


Theorem pthdadjvtx

Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion pthdadjvtx FPathsGP1<FI0..^FPIPI+1

Proof

Step Hyp Ref Expression
1 elfzo0l I0..^FI=0I1..^F
2 simpr 1<FFPathsGPFPathsGP
3 pthiswlk FPathsGPFWalksGP
4 wlkcl FWalksGPF0
5 1zzd F01<F1
6 nn0z F0F
7 6 adantr F01<FF
8 simpr F01<F1<F
9 fzolb 11..^F1F1<F
10 5 7 8 9 syl3anbrc F01<F11..^F
11 0elfz F000F
12 11 adantr F01<F00F
13 ax-1ne0 10
14 13 a1i F01<F10
15 10 12 14 3jca F01<F11..^F00F10
16 15 ex F01<F11..^F00F10
17 3 4 16 3syl FPathsGP1<F11..^F00F10
18 17 impcom 1<FFPathsGP11..^F00F10
19 pthdivtx FPathsGP11..^F00F10P1P0
20 2 18 19 syl2anc 1<FFPathsGPP1P0
21 20 necomd 1<FFPathsGPP0P1
22 21 3adant1 I=01<FFPathsGPP0P1
23 fveq2 I=0PI=P0
24 fv0p1e1 I=0PI+1=P1
25 23 24 neeq12d I=0PIPI+1P0P1
26 25 3ad2ant1 I=01<FFPathsGPPIPI+1P0P1
27 22 26 mpbird I=01<FFPathsGPPIPI+1
28 27 3exp I=01<FFPathsGPPIPI+1
29 simp3 I1..^F1<FFPathsGPFPathsGP
30 id I1..^FI1..^F
31 fzo0ss1 1..^F0..^F
32 31 sseli I1..^FI0..^F
33 fzofzp1 I0..^FI+10F
34 32 33 syl I1..^FI+10F
35 elfzoelz I1..^FI
36 35 zcnd I1..^FI
37 1cnd I1..^F1
38 13 a1i I1..^F10
39 36 37 38 3jca I1..^FI110
40 addn0nid I110I+1I
41 40 necomd I110II+1
42 39 41 syl I1..^FII+1
43 30 34 42 3jca I1..^FI1..^FI+10FII+1
44 43 3ad2ant1 I1..^F1<FFPathsGPI1..^FI+10FII+1
45 pthdivtx FPathsGPI1..^FI+10FII+1PIPI+1
46 29 44 45 syl2anc I1..^F1<FFPathsGPPIPI+1
47 46 3exp I1..^F1<FFPathsGPPIPI+1
48 28 47 jaoi I=0I1..^F1<FFPathsGPPIPI+1
49 1 48 syl I0..^F1<FFPathsGPPIPI+1
50 49 3imp31 FPathsGP1<FI0..^FPIPI+1