Metamath Proof Explorer


Theorem pthdivtx

Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Assertion pthdivtx FPathsGPI1..^FJ0FIJPIPJ

Proof

Step Hyp Ref Expression
1 ispth FPathsGPFTrailsGPFunP1..^F-1P0FP1..^F=
2 trliswlk FTrailsGPFWalksGP
3 eqid VtxG=VtxG
4 3 wlkp FWalksGPP:0FVtxG
5 elfz0lmr J0FJ=0J1..^FJ=F
6 elfzo1 I1..^FIFI<F
7 nnnn0 FF0
8 7 3ad2ant2 IFI<FF0
9 6 8 sylbi I1..^FF0
10 9 adantl J=0I1..^FF0
11 fvinim0ffz P:0FVtxGF0P0FP1..^F=P0P1..^FPFP1..^F
12 10 11 sylan2 P:0FVtxGJ=0I1..^FP0FP1..^F=P0P1..^FPFP1..^F
13 fveq2 J=0PJ=P0
14 13 eqeq2d J=0PI=PJPI=P0
15 14 ad2antrl P:0FVtxGJ=0I1..^FPI=PJPI=P0
16 ffun P:0FVtxGFunP
17 16 adantr P:0FVtxGI1..^FFunP
18 fdm P:0FVtxGdomP=0F
19 fzo0ss1 1..^F0..^F
20 fzossfz 0..^F0F
21 19 20 sstri 1..^F0F
22 21 sseli I1..^FI0F
23 eleq2 domP=0FIdomPI0F
24 22 23 imbitrrid domP=0FI1..^FIdomP
25 18 24 syl P:0FVtxGI1..^FIdomP
26 25 imp P:0FVtxGI1..^FIdomP
27 17 26 jca P:0FVtxGI1..^FFunPIdomP
28 27 adantrl P:0FVtxGJ=0I1..^FFunPIdomP
29 simprr P:0FVtxGJ=0I1..^FI1..^F
30 funfvima FunPIdomPI1..^FPIP1..^F
31 28 29 30 sylc P:0FVtxGJ=0I1..^FPIP1..^F
32 eleq1 PI=P0PIP1..^FP0P1..^F
33 31 32 syl5ibcom P:0FVtxGJ=0I1..^FPI=P0P0P1..^F
34 15 33 sylbid P:0FVtxGJ=0I1..^FPI=PJP0P1..^F
35 nnel ¬P0P1..^FP0P1..^F
36 34 35 syl6ibr P:0FVtxGJ=0I1..^FPI=PJ¬P0P1..^F
37 36 necon2ad P:0FVtxGJ=0I1..^FP0P1..^FPIPJ
38 37 adantrd P:0FVtxGJ=0I1..^FP0P1..^FPFP1..^FPIPJ
39 12 38 sylbid P:0FVtxGJ=0I1..^FP0FP1..^F=PIPJ
40 39 ex P:0FVtxGJ=0I1..^FP0FP1..^F=PIPJ
41 40 com23 P:0FVtxGP0FP1..^F=J=0I1..^FPIPJ
42 41 a1d P:0FVtxGFunP1..^F-1P0FP1..^F=J=0I1..^FPIPJ
43 42 3imp P:0FVtxGFunP1..^F-1P0FP1..^F=J=0I1..^FPIPJ
44 43 com12 J=0I1..^FP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
45 44 a1d J=0I1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
46 45 ex J=0I1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
47 fvres I1..^FP1..^FI=PI
48 47 adantl J1..^FI1..^FP1..^FI=PI
49 48 adantl P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FP1..^FI=PI
50 49 eqcomd P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FPI=P1..^FI
51 fvres J1..^FP1..^FJ=PJ
52 51 ad2antrl P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FP1..^FJ=PJ
53 52 eqcomd P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FPJ=P1..^FJ
54 50 53 eqeq12d P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FPI=PJP1..^FI=P1..^FJ
55 fssres P:0FVtxG1..^F0FP1..^F:1..^FVtxG
56 21 55 mpan2 P:0FVtxGP1..^F:1..^FVtxG
57 df-f1 P1..^F:1..^F1-1VtxGP1..^F:1..^FVtxGFunP1..^F-1
58 57 biimpri P1..^F:1..^FVtxGFunP1..^F-1P1..^F:1..^F1-1VtxG
59 56 58 sylan P:0FVtxGFunP1..^F-1P1..^F:1..^F1-1VtxG
60 59 3adant3 P:0FVtxGFunP1..^F-1P0FP1..^F=P1..^F:1..^F1-1VtxG
61 simpr P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FJ1..^FI1..^F
62 61 ancomd P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FI1..^FJ1..^F
63 f1veqaeq P1..^F:1..^F1-1VtxGI1..^FJ1..^FP1..^FI=P1..^FJI=J
64 60 62 63 syl2an2r P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FP1..^FI=P1..^FJI=J
65 54 64 sylbid P:0FVtxGFunP1..^F-1P0FP1..^F=J1..^FI1..^FPI=PJI=J
66 65 ancoms J1..^FI1..^FP:0FVtxGFunP1..^F-1P0FP1..^F=PI=PJI=J
67 66 necon3d J1..^FI1..^FP:0FVtxGFunP1..^F-1P0FP1..^F=IJPIPJ
68 67 ex J1..^FI1..^FP:0FVtxGFunP1..^F-1P0FP1..^F=IJPIPJ
69 68 com23 J1..^FI1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
70 69 ex J1..^FI1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
71 9 adantl J=FI1..^FF0
72 71 11 sylan2 P:0FVtxGJ=FI1..^FP0FP1..^F=P0P1..^FPFP1..^F
73 fveq2 J=FPJ=PF
74 73 eqeq2d J=FPI=PJPI=PF
75 74 ad2antrl P:0FVtxGJ=FI1..^FPI=PJPI=PF
76 27 adantrl P:0FVtxGJ=FI1..^FFunPIdomP
77 simprr P:0FVtxGJ=FI1..^FI1..^F
78 76 77 30 sylc P:0FVtxGJ=FI1..^FPIP1..^F
79 eleq1 PI=PFPIP1..^FPFP1..^F
80 78 79 syl5ibcom P:0FVtxGJ=FI1..^FPI=PFPFP1..^F
81 75 80 sylbid P:0FVtxGJ=FI1..^FPI=PJPFP1..^F
82 nnel ¬PFP1..^FPFP1..^F
83 81 82 syl6ibr P:0FVtxGJ=FI1..^FPI=PJ¬PFP1..^F
84 83 necon2ad P:0FVtxGJ=FI1..^FPFP1..^FPIPJ
85 84 adantld P:0FVtxGJ=FI1..^FP0P1..^FPFP1..^FPIPJ
86 72 85 sylbid P:0FVtxGJ=FI1..^FP0FP1..^F=PIPJ
87 86 ex P:0FVtxGJ=FI1..^FP0FP1..^F=PIPJ
88 87 com23 P:0FVtxGP0FP1..^F=J=FI1..^FPIPJ
89 88 a1d P:0FVtxGFunP1..^F-1P0FP1..^F=J=FI1..^FPIPJ
90 89 3imp P:0FVtxGFunP1..^F-1P0FP1..^F=J=FI1..^FPIPJ
91 90 com12 J=FI1..^FP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
92 91 a1d J=FI1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
93 92 ex J=FI1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
94 46 70 93 3jaoi J=0J1..^FJ=FI1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
95 5 94 syl J0FI1..^FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
96 95 3imp21 I1..^FJ0FIJP:0FVtxGFunP1..^F-1P0FP1..^F=PIPJ
97 96 com12 P:0FVtxGFunP1..^F-1P0FP1..^F=I1..^FJ0FIJPIPJ
98 97 3exp P:0FVtxGFunP1..^F-1P0FP1..^F=I1..^FJ0FIJPIPJ
99 2 4 98 3syl FTrailsGPFunP1..^F-1P0FP1..^F=I1..^FJ0FIJPIPJ
100 99 3imp FTrailsGPFunP1..^F-1P0FP1..^F=I1..^FJ0FIJPIPJ
101 1 100 sylbi FPathsGPI1..^FJ0FIJPIPJ
102 101 imp FPathsGPI1..^FJ0FIJPIPJ