Metamath Proof Explorer


Theorem pttopon

Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis ptunimpt.j J=𝑡xAK
Assertion pttopon AVxAKTopOnBJTopOnxAB

Proof

Step Hyp Ref Expression
1 ptunimpt.j J=𝑡xAK
2 topontop KTopOnBKTop
3 2 ralimi xAKTopOnBxAKTop
4 eqid xAK=xAK
5 4 fmpt xAKTopxAK:ATop
6 3 5 sylib xAKTopOnBxAK:ATop
7 pttop AVxAK:ATop𝑡xAKTop
8 1 7 eqeltrid AVxAK:ATopJTop
9 6 8 sylan2 AVxAKTopOnBJTop
10 toponuni KTopOnBB=K
11 10 ralimi xAKTopOnBxAB=K
12 ixpeq2 xAB=KxAB=xAK
13 11 12 syl xAKTopOnBxAB=xAK
14 13 adantl AVxAKTopOnBxAB=xAK
15 1 ptunimpt AVxAKTopxAK=J
16 3 15 sylan2 AVxAKTopOnBxAK=J
17 14 16 eqtrd AVxAKTopOnBxAB=J
18 istopon JTopOnxABJTopxAB=J
19 9 17 18 sylanbrc AVxAKTopOnBJTopOnxAB