Metamath Proof Explorer


Theorem pwsnOLD

Description: Obsolete version of pwsn as of 14-Apr-2024. Note that the proof is essentially the same once one inlines sssn in the proof of pwsn . (Contributed by NM, 5-Jun-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pwsnOLD 𝒫A=A

Proof

Step Hyp Ref Expression
1 dfss2 xAyyxyA
2 velsn yAy=A
3 2 imbi2i yxyAyxy=A
4 3 albii yyxyAyyxy=A
5 1 4 bitri xAyyxy=A
6 neq0 ¬x=yyx
7 exintr yyxy=Ayyxyyxy=A
8 6 7 biimtrid yyxy=A¬x=yyxy=A
9 dfclel Axyy=Ayx
10 exancom yy=Ayxyyxy=A
11 9 10 bitr2i yyxy=AAx
12 snssi AxAx
13 11 12 sylbi yyxy=AAx
14 8 13 syl6 yyxy=A¬x=Ax
15 5 14 sylbi xA¬x=Ax
16 15 anc2li xA¬x=xAAx
17 eqss x=AxAAx
18 16 17 imbitrrdi xA¬x=x=A
19 18 orrd xAx=x=A
20 0ss A
21 sseq1 x=xAA
22 20 21 mpbiri x=xA
23 eqimss x=AxA
24 22 23 jaoi x=x=AxA
25 19 24 impbii xAx=x=A
26 25 abbii x|xA=x|x=x=A
27 df-pw 𝒫A=x|xA
28 dfpr2 A=x|x=x=A
29 26 27 28 3eqtr4i 𝒫A=A