Metamath Proof Explorer


Theorem qusgrp

Description: If Y is a normal subgroup of G , then H = G / Y is a group, called the quotient of G by Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis qusgrp.h H=G/𝑠G~QGS
Assertion qusgrp SNrmSGrpGHGrp

Proof

Step Hyp Ref Expression
1 qusgrp.h H=G/𝑠G~QGS
2 1 a1i SNrmSGrpGH=G/𝑠G~QGS
3 eqidd SNrmSGrpGBaseG=BaseG
4 eqidd SNrmSGrpG+G=+G
5 nsgsubg SNrmSGrpGSSubGrpG
6 eqid BaseG=BaseG
7 eqid G~QGS=G~QGS
8 6 7 eqger SSubGrpGG~QGSErBaseG
9 5 8 syl SNrmSGrpGG~QGSErBaseG
10 subgrcl SSubGrpGGGrp
11 5 10 syl SNrmSGrpGGGrp
12 eqid +G=+G
13 6 7 12 eqgcpbl SNrmSGrpGaG~QGScbG~QGSda+GbG~QGSc+Gd
14 6 12 grpcl GGrpuBaseGvBaseGu+GvBaseG
15 11 14 syl3an1 SNrmSGrpGuBaseGvBaseGu+GvBaseG
16 9 adantr SNrmSGrpGuBaseGvBaseGwBaseGG~QGSErBaseG
17 11 adantr SNrmSGrpGuBaseGvBaseGwBaseGGGrp
18 simpr1 SNrmSGrpGuBaseGvBaseGwBaseGuBaseG
19 simpr2 SNrmSGrpGuBaseGvBaseGwBaseGvBaseG
20 17 18 19 14 syl3anc SNrmSGrpGuBaseGvBaseGwBaseGu+GvBaseG
21 simpr3 SNrmSGrpGuBaseGvBaseGwBaseGwBaseG
22 6 12 grpcl GGrpu+GvBaseGwBaseGu+Gv+GwBaseG
23 17 20 21 22 syl3anc SNrmSGrpGuBaseGvBaseGwBaseGu+Gv+GwBaseG
24 16 23 erref SNrmSGrpGuBaseGvBaseGwBaseGu+Gv+GwG~QGSu+Gv+Gw
25 6 12 grpass GGrpuBaseGvBaseGwBaseGu+Gv+Gw=u+Gv+Gw
26 11 25 sylan SNrmSGrpGuBaseGvBaseGwBaseGu+Gv+Gw=u+Gv+Gw
27 24 26 breqtrd SNrmSGrpGuBaseGvBaseGwBaseGu+Gv+GwG~QGSu+Gv+Gw
28 eqid 0G=0G
29 6 28 grpidcl GGrp0GBaseG
30 11 29 syl SNrmSGrpG0GBaseG
31 6 12 28 grplid GGrpuBaseG0G+Gu=u
32 11 31 sylan SNrmSGrpGuBaseG0G+Gu=u
33 9 adantr SNrmSGrpGuBaseGG~QGSErBaseG
34 simpr SNrmSGrpGuBaseGuBaseG
35 33 34 erref SNrmSGrpGuBaseGuG~QGSu
36 32 35 eqbrtrd SNrmSGrpGuBaseG0G+GuG~QGSu
37 eqid invgG=invgG
38 6 37 grpinvcl GGrpuBaseGinvgGuBaseG
39 11 38 sylan SNrmSGrpGuBaseGinvgGuBaseG
40 6 12 28 37 grplinv GGrpuBaseGinvgGu+Gu=0G
41 11 40 sylan SNrmSGrpGuBaseGinvgGu+Gu=0G
42 30 adantr SNrmSGrpGuBaseG0GBaseG
43 33 42 erref SNrmSGrpGuBaseG0GG~QGS0G
44 41 43 eqbrtrd SNrmSGrpGuBaseGinvgGu+GuG~QGS0G
45 2 3 4 9 11 13 15 27 30 36 39 44 qusgrp2 SNrmSGrpGHGrp0GG~QGS=0H
46 45 simpld SNrmSGrpGHGrp