Description: If Y is a normal subgroup of G , then H = G / Y is a group, called the quotient of G by Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | qusgrp.h | |
|
Assertion | qusgrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusgrp.h | |
|
2 | 1 | a1i | |
3 | eqidd | |
|
4 | eqidd | |
|
5 | nsgsubg | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | eqger | |
9 | 5 8 | syl | |
10 | subgrcl | |
|
11 | 5 10 | syl | |
12 | eqid | |
|
13 | 6 7 12 | eqgcpbl | |
14 | 6 12 | grpcl | |
15 | 11 14 | syl3an1 | |
16 | 9 | adantr | |
17 | 11 | adantr | |
18 | simpr1 | |
|
19 | simpr2 | |
|
20 | 17 18 19 14 | syl3anc | |
21 | simpr3 | |
|
22 | 6 12 | grpcl | |
23 | 17 20 21 22 | syl3anc | |
24 | 16 23 | erref | |
25 | 6 12 | grpass | |
26 | 11 25 | sylan | |
27 | 24 26 | breqtrd | |
28 | eqid | |
|
29 | 6 28 | grpidcl | |
30 | 11 29 | syl | |
31 | 6 12 28 | grplid | |
32 | 11 31 | sylan | |
33 | 9 | adantr | |
34 | simpr | |
|
35 | 33 34 | erref | |
36 | 32 35 | eqbrtrd | |
37 | eqid | |
|
38 | 6 37 | grpinvcl | |
39 | 11 38 | sylan | |
40 | 6 12 28 37 | grplinv | |
41 | 11 40 | sylan | |
42 | 30 | adantr | |
43 | 33 42 | erref | |
44 | 41 43 | eqbrtrd | |
45 | 2 3 4 9 11 13 15 27 30 36 39 44 | qusgrp2 | |
46 | 45 | simpld | |