Metamath Proof Explorer


Theorem qusinv

Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h H=G/𝑠G~QGS
qusinv.v V=BaseG
qusinv.i I=invgG
qusinv.n N=invgH
Assertion qusinv SNrmSGrpGXVNXG~QGS=IXG~QGS

Proof

Step Hyp Ref Expression
1 qusgrp.h H=G/𝑠G~QGS
2 qusinv.v V=BaseG
3 qusinv.i I=invgG
4 qusinv.n N=invgH
5 nsgsubg SNrmSGrpGSSubGrpG
6 subgrcl SSubGrpGGGrp
7 5 6 syl SNrmSGrpGGGrp
8 2 3 grpinvcl GGrpXVIXV
9 7 8 sylan SNrmSGrpGXVIXV
10 eqid +G=+G
11 eqid +H=+H
12 1 2 10 11 qusadd SNrmSGrpGXVIXVXG~QGS+HIXG~QGS=X+GIXG~QGS
13 9 12 mpd3an3 SNrmSGrpGXVXG~QGS+HIXG~QGS=X+GIXG~QGS
14 eqid 0G=0G
15 2 10 14 3 grprinv GGrpXVX+GIX=0G
16 7 15 sylan SNrmSGrpGXVX+GIX=0G
17 16 eceq1d SNrmSGrpGXVX+GIXG~QGS=0GG~QGS
18 1 14 qus0 SNrmSGrpG0GG~QGS=0H
19 18 adantr SNrmSGrpGXV0GG~QGS=0H
20 13 17 19 3eqtrd SNrmSGrpGXVXG~QGS+HIXG~QGS=0H
21 1 qusgrp SNrmSGrpGHGrp
22 21 adantr SNrmSGrpGXVHGrp
23 eqid BaseH=BaseH
24 1 2 23 quseccl SNrmSGrpGXVXG~QGSBaseH
25 1 2 23 quseccl SNrmSGrpGIXVIXG~QGSBaseH
26 9 25 syldan SNrmSGrpGXVIXG~QGSBaseH
27 eqid 0H=0H
28 23 11 27 4 grpinvid1 HGrpXG~QGSBaseHIXG~QGSBaseHNXG~QGS=IXG~QGSXG~QGS+HIXG~QGS=0H
29 22 24 26 28 syl3anc SNrmSGrpGXVNXG~QGS=IXG~QGSXG~QGS+HIXG~QGS=0H
30 20 29 mpbird SNrmSGrpGXVNXG~QGS=IXG~QGS