Metamath Proof Explorer


Theorem qusscaval

Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v B = Base M
eqgvscpbl.e ˙ = M ~ QG G
eqgvscpbl.s S = Base Scalar M
eqgvscpbl.p · ˙ = M
eqgvscpbl.m φ M LMod
eqgvscpbl.g φ G LSubSp M
eqgvscpbl.k φ K S
qusscaval.n N = M / 𝑠 M ~ QG G
qusscaval.m ˙ = N
Assertion qusscaval φ K S X B K ˙ X M ~ QG G = K · ˙ X M ~ QG G

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v B = Base M
2 eqgvscpbl.e ˙ = M ~ QG G
3 eqgvscpbl.s S = Base Scalar M
4 eqgvscpbl.p · ˙ = M
5 eqgvscpbl.m φ M LMod
6 eqgvscpbl.g φ G LSubSp M
7 eqgvscpbl.k φ K S
8 qusscaval.n N = M / 𝑠 M ~ QG G
9 qusscaval.m ˙ = N
10 8 a1i φ N = M / 𝑠 M ~ QG G
11 1 a1i φ B = Base M
12 eqid x B x M ~ QG G = x B x M ~ QG G
13 ovex M ~ QG G V
14 13 a1i φ M ~ QG G V
15 10 11 12 14 5 qusval φ N = x B x M ~ QG G 𝑠 M
16 10 11 12 14 5 quslem φ x B x M ~ QG G : B onto B / M ~ QG G
17 eqid Scalar M = Scalar M
18 5 adantr φ k S u B v B M LMod
19 6 adantr φ k S u B v B G LSubSp M
20 simpr1 φ k S u B v B k S
21 simpr2 φ k S u B v B u B
22 simpr3 φ k S u B v B v B
23 1 2 3 4 18 19 20 8 9 12 21 22 qusvscpbl φ k S u B v B x B x M ~ QG G u = x B x M ~ QG G v x B x M ~ QG G k · ˙ u = x B x M ~ QG G k · ˙ v
24 15 11 16 5 17 3 4 9 23 imasvscaval φ K S X B K ˙ x B x M ~ QG G X = x B x M ~ QG G K · ˙ X
25 eceq1 x = X x M ~ QG G = X M ~ QG G
26 ecexg M ~ QG G V X M ~ QG G V
27 13 26 ax-mp X M ~ QG G V
28 25 12 27 fvmpt X B x B x M ~ QG G X = X M ~ QG G
29 28 3ad2ant3 φ K S X B x B x M ~ QG G X = X M ~ QG G
30 29 oveq2d φ K S X B K ˙ x B x M ~ QG G X = K ˙ X M ~ QG G
31 1 17 4 3 lmodvscl M LMod K S X B K · ˙ X B
32 5 31 syl3an1 φ K S X B K · ˙ X B
33 eceq1 x = K · ˙ X x M ~ QG G = K · ˙ X M ~ QG G
34 ecexg M ~ QG G V K · ˙ X M ~ QG G V
35 13 34 ax-mp K · ˙ X M ~ QG G V
36 33 12 35 fvmpt K · ˙ X B x B x M ~ QG G K · ˙ X = K · ˙ X M ~ QG G
37 32 36 syl φ K S X B x B x M ~ QG G K · ˙ X = K · ˙ X M ~ QG G
38 24 30 37 3eqtr3d φ K S X B K ˙ X M ~ QG G = K · ˙ X M ~ QG G