Metamath Proof Explorer


Theorem qusvsval

Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v B=BaseM
eqgvscpbl.e ˙=M~QGG
eqgvscpbl.s S=BaseScalarM
eqgvscpbl.p ·˙=M
eqgvscpbl.m φMLMod
eqgvscpbl.g φGLSubSpM
eqgvscpbl.k φKS
qusvsval.n N=M/𝑠M~QGG
qusvsval.m ˙=N
qusvsval.x φXB
Assertion qusvsval φK˙XM~QGG=K·˙XM~QGG

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v B=BaseM
2 eqgvscpbl.e ˙=M~QGG
3 eqgvscpbl.s S=BaseScalarM
4 eqgvscpbl.p ·˙=M
5 eqgvscpbl.m φMLMod
6 eqgvscpbl.g φGLSubSpM
7 eqgvscpbl.k φKS
8 qusvsval.n N=M/𝑠M~QGG
9 qusvsval.m ˙=N
10 qusvsval.x φXB
11 8 a1i φN=M/𝑠M~QGG
12 1 a1i φB=BaseM
13 eqid xBxM~QGG=xBxM~QGG
14 ovex M~QGGV
15 14 a1i φM~QGGV
16 11 12 13 15 5 qusval φN=xBxM~QGG𝑠M
17 11 12 13 15 5 quslem φxBxM~QGG:BontoB/M~QGG
18 eqid ScalarM=ScalarM
19 5 adantr φkSuBvBMLMod
20 6 adantr φkSuBvBGLSubSpM
21 simpr1 φkSuBvBkS
22 simpr2 φkSuBvBuB
23 simpr3 φkSuBvBvB
24 1 2 3 4 19 20 21 8 9 13 22 23 qusvscpbl φkSuBvBxBxM~QGGu=xBxM~QGGvxBxM~QGGk·˙u=xBxM~QGGk·˙v
25 16 12 17 5 18 3 4 9 24 imasvscaval φKSXBK˙xBxM~QGGX=xBxM~QGGK·˙X
26 7 10 25 mpd3an23 φK˙xBxM~QGGX=xBxM~QGGK·˙X
27 eceq1 x=XxM~QGG=XM~QGG
28 ecexg M~QGGVXM~QGGV
29 14 28 ax-mp XM~QGGV
30 27 13 29 fvmpt XBxBxM~QGGX=XM~QGG
31 10 30 syl φxBxM~QGGX=XM~QGG
32 31 oveq2d φK˙xBxM~QGGX=K˙XM~QGG
33 1 18 4 3 lmodvscl MLModKSXBK·˙XB
34 5 7 10 33 syl3anc φK·˙XB
35 eceq1 x=K·˙XxM~QGG=K·˙XM~QGG
36 ecexg M~QGGVK·˙XM~QGGV
37 14 36 ax-mp K·˙XM~QGGV
38 35 13 37 fvmpt K·˙XBxBxM~QGGK·˙X=K·˙XM~QGG
39 34 38 syl φxBxM~QGGK·˙X=K·˙XM~QGG
40 26 32 39 3eqtr3d φK˙XM~QGG=K·˙XM~QGG