Metamath Proof Explorer


Theorem r1pid

Description: Express the original polynomial F as F = ( q x. G ) + r using the quotient and remainder functions for q and r . (Contributed by Mario Carneiro, 5-Jun-2015)

Ref Expression
Hypotheses r1pid.p P=Poly1R
r1pid.b B=BaseP
r1pid.c C=Unic1pR
r1pid.q Q=quot1pR
r1pid.e E=rem1pR
r1pid.t ·˙=P
r1pid.m +˙=+P
Assertion r1pid RRingFBGCF=FQG·˙G+˙FEG

Proof

Step Hyp Ref Expression
1 r1pid.p P=Poly1R
2 r1pid.b B=BaseP
3 r1pid.c C=Unic1pR
4 r1pid.q Q=quot1pR
5 r1pid.e E=rem1pR
6 r1pid.t ·˙=P
7 r1pid.m +˙=+P
8 1 2 3 uc1pcl GCGB
9 eqid -P=-P
10 5 1 2 4 6 9 r1pval FBGBFEG=F-PFQG·˙G
11 8 10 sylan2 FBGCFEG=F-PFQG·˙G
12 11 3adant1 RRingFBGCFEG=F-PFQG·˙G
13 12 oveq2d RRingFBGCFQG·˙G+˙FEG=FQG·˙G+˙F-PFQG·˙G
14 1 ply1ring RRingPRing
15 14 3ad2ant1 RRingFBGCPRing
16 ringabl PRingPAbel
17 15 16 syl RRingFBGCPAbel
18 4 1 2 3 q1pcl RRingFBGCFQGB
19 8 3ad2ant3 RRingFBGCGB
20 2 6 ringcl PRingFQGBGBFQG·˙GB
21 15 18 19 20 syl3anc RRingFBGCFQG·˙GB
22 ringgrp PRingPGrp
23 15 22 syl RRingFBGCPGrp
24 simp2 RRingFBGCFB
25 2 9 grpsubcl PGrpFBFQG·˙GBF-PFQG·˙GB
26 23 24 21 25 syl3anc RRingFBGCF-PFQG·˙GB
27 2 7 ablcom PAbelFQG·˙GBF-PFQG·˙GBFQG·˙G+˙F-PFQG·˙G=F-PFQG·˙G+˙FQG·˙G
28 17 21 26 27 syl3anc RRingFBGCFQG·˙G+˙F-PFQG·˙G=F-PFQG·˙G+˙FQG·˙G
29 2 7 9 grpnpcan PGrpFBFQG·˙GBF-PFQG·˙G+˙FQG·˙G=F
30 23 24 21 29 syl3anc RRingFBGCF-PFQG·˙G+˙FQG·˙G=F
31 13 28 30 3eqtrrd RRingFBGCF=FQG·˙G+˙FEG