Metamath Proof Explorer


Theorem r1pval

Description: Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses r1pval.e E=rem1pR
r1pval.p P=Poly1R
r1pval.b B=BaseP
r1pval.q Q=quot1pR
r1pval.t ·˙=P
r1pval.m -˙=-P
Assertion r1pval FBGBFEG=F-˙FQG·˙G

Proof

Step Hyp Ref Expression
1 r1pval.e E=rem1pR
2 r1pval.p P=Poly1R
3 r1pval.b B=BaseP
4 r1pval.q Q=quot1pR
5 r1pval.t ·˙=P
6 r1pval.m -˙=-P
7 2 3 elbasfv FBRV
8 7 adantr FBGBRV
9 fveq2 r=RPoly1r=Poly1R
10 9 2 eqtr4di r=RPoly1r=P
11 10 fveq2d r=RBasePoly1r=BaseP
12 11 3 eqtr4di r=RBasePoly1r=B
13 12 csbeq1d r=RBasePoly1r/bfb,gbf-Poly1rfquot1prgPoly1rg=B/bfb,gbf-Poly1rfquot1prgPoly1rg
14 3 fvexi BV
15 14 a1i r=RBV
16 simpr r=Rb=Bb=B
17 10 fveq2d r=R-Poly1r=-P
18 17 6 eqtr4di r=R-Poly1r=-˙
19 eqidd r=Rf=f
20 10 fveq2d r=RPoly1r=P
21 20 5 eqtr4di r=RPoly1r=·˙
22 fveq2 r=Rquot1pr=quot1pR
23 22 4 eqtr4di r=Rquot1pr=Q
24 23 oveqd r=Rfquot1prg=fQg
25 eqidd r=Rg=g
26 21 24 25 oveq123d r=Rfquot1prgPoly1rg=fQg·˙g
27 18 19 26 oveq123d r=Rf-Poly1rfquot1prgPoly1rg=f-˙fQg·˙g
28 27 adantr r=Rb=Bf-Poly1rfquot1prgPoly1rg=f-˙fQg·˙g
29 16 16 28 mpoeq123dv r=Rb=Bfb,gbf-Poly1rfquot1prgPoly1rg=fB,gBf-˙fQg·˙g
30 15 29 csbied r=RB/bfb,gbf-Poly1rfquot1prgPoly1rg=fB,gBf-˙fQg·˙g
31 13 30 eqtrd r=RBasePoly1r/bfb,gbf-Poly1rfquot1prgPoly1rg=fB,gBf-˙fQg·˙g
32 df-r1p rem1p=rVBasePoly1r/bfb,gbf-Poly1rfquot1prgPoly1rg
33 14 14 mpoex fB,gBf-˙fQg·˙gV
34 31 32 33 fvmpt RVrem1pR=fB,gBf-˙fQg·˙g
35 1 34 eqtrid RVE=fB,gBf-˙fQg·˙g
36 8 35 syl FBGBE=fB,gBf-˙fQg·˙g
37 simpl f=Fg=Gf=F
38 oveq12 f=Fg=GfQg=FQG
39 simpr f=Fg=Gg=G
40 38 39 oveq12d f=Fg=GfQg·˙g=FQG·˙G
41 37 40 oveq12d f=Fg=Gf-˙fQg·˙g=F-˙FQG·˙G
42 41 adantl FBGBf=Fg=Gf-˙fQg·˙g=F-˙FQG·˙G
43 simpl FBGBFB
44 simpr FBGBGB
45 ovexd FBGBF-˙FQG·˙GV
46 36 42 43 44 45 ovmpod FBGBFEG=F-˙FQG·˙G