Metamath Proof Explorer


Theorem r1pval

Description: Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses r1pval.e E = rem 1p R
r1pval.p P = Poly 1 R
r1pval.b B = Base P
r1pval.q Q = quot 1p R
r1pval.t · ˙ = P
r1pval.m - ˙ = - P
Assertion r1pval F B G B F E G = F - ˙ F Q G · ˙ G

Proof

Step Hyp Ref Expression
1 r1pval.e E = rem 1p R
2 r1pval.p P = Poly 1 R
3 r1pval.b B = Base P
4 r1pval.q Q = quot 1p R
5 r1pval.t · ˙ = P
6 r1pval.m - ˙ = - P
7 2 3 elbasfv F B R V
8 7 adantr F B G B R V
9 fveq2 r = R Poly 1 r = Poly 1 R
10 9 2 eqtr4di r = R Poly 1 r = P
11 10 fveq2d r = R Base Poly 1 r = Base P
12 11 3 eqtr4di r = R Base Poly 1 r = B
13 12 csbeq1d r = R Base Poly 1 r / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g = B / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g
14 3 fvexi B V
15 14 a1i r = R B V
16 simpr r = R b = B b = B
17 10 fveq2d r = R - Poly 1 r = - P
18 17 6 eqtr4di r = R - Poly 1 r = - ˙
19 eqidd r = R f = f
20 10 fveq2d r = R Poly 1 r = P
21 20 5 eqtr4di r = R Poly 1 r = · ˙
22 fveq2 r = R quot 1p r = quot 1p R
23 22 4 eqtr4di r = R quot 1p r = Q
24 23 oveqd r = R f quot 1p r g = f Q g
25 eqidd r = R g = g
26 21 24 25 oveq123d r = R f quot 1p r g Poly 1 r g = f Q g · ˙ g
27 18 19 26 oveq123d r = R f - Poly 1 r f quot 1p r g Poly 1 r g = f - ˙ f Q g · ˙ g
28 27 adantr r = R b = B f - Poly 1 r f quot 1p r g Poly 1 r g = f - ˙ f Q g · ˙ g
29 16 16 28 mpoeq123dv r = R b = B f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g = f B , g B f - ˙ f Q g · ˙ g
30 15 29 csbied r = R B / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g = f B , g B f - ˙ f Q g · ˙ g
31 13 30 eqtrd r = R Base Poly 1 r / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g = f B , g B f - ˙ f Q g · ˙ g
32 df-r1p rem 1p = r V Base Poly 1 r / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g
33 14 14 mpoex f B , g B f - ˙ f Q g · ˙ g V
34 31 32 33 fvmpt R V rem 1p R = f B , g B f - ˙ f Q g · ˙ g
35 1 34 syl5eq R V E = f B , g B f - ˙ f Q g · ˙ g
36 8 35 syl F B G B E = f B , g B f - ˙ f Q g · ˙ g
37 simpl f = F g = G f = F
38 oveq12 f = F g = G f Q g = F Q G
39 simpr f = F g = G g = G
40 38 39 oveq12d f = F g = G f Q g · ˙ g = F Q G · ˙ G
41 37 40 oveq12d f = F g = G f - ˙ f Q g · ˙ g = F - ˙ F Q G · ˙ G
42 41 adantl F B G B f = F g = G f - ˙ f Q g · ˙ g = F - ˙ F Q G · ˙ G
43 simpl F B G B F B
44 simpr F B G B G B
45 ovexd F B G B F - ˙ F Q G · ˙ G V
46 36 42 43 44 45 ovmpod F B G B F E G = F - ˙ F Q G · ˙ G