Metamath Proof Explorer


Theorem radcnvcl

Description: The radius of convergence R of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G=xn0Anxn
radcnv.a φA:0
radcnv.r R=supr|seq0+Grdom*<
Assertion radcnvcl φR0+∞

Proof

Step Hyp Ref Expression
1 pser.g G=xn0Anxn
2 radcnv.a φA:0
3 radcnv.r R=supr|seq0+Grdom*<
4 ssrab2 r|seq0+Grdom
5 ressxr *
6 4 5 sstri r|seq0+Grdom*
7 supxrcl r|seq0+Grdom*supr|seq0+Grdom*<*
8 6 7 mp1i φsupr|seq0+Grdom*<*
9 3 8 eqeltrid φR*
10 1 2 radcnv0 φ0r|seq0+Grdom
11 supxrub r|seq0+Grdom*0r|seq0+Grdom0supr|seq0+Grdom*<
12 6 10 11 sylancr φ0supr|seq0+Grdom*<
13 12 3 breqtrrdi φ0R
14 pnfge R*R+∞
15 9 14 syl φR+∞
16 0xr 0*
17 pnfxr +∞*
18 elicc1 0*+∞*R0+∞R*0RR+∞
19 16 17 18 mp2an R0+∞R*0RR+∞
20 9 13 15 19 syl3anbrc φR0+∞