Metamath Proof Explorer


Theorem radcnvlem3

Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges at X . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses pser.g G=xn0Anxn
radcnv.a φA:0
psergf.x φX
radcnvlem2.y φY
radcnvlem2.a φX<Y
radcnvlem2.c φseq0+GYdom
Assertion radcnvlem3 φseq0+GXdom

Proof

Step Hyp Ref Expression
1 pser.g G=xn0Anxn
2 radcnv.a φA:0
3 psergf.x φX
4 radcnvlem2.y φY
5 radcnvlem2.a φX<Y
6 radcnvlem2.c φseq0+GYdom
7 nn0uz 0=0
8 0zd φ0
9 1 2 3 psergf φGX:0
10 fvco3 GX:0k0absGXk=GXk
11 9 10 sylan φk0absGXk=GXk
12 9 ffvelcdmda φk0GXk
13 1 2 3 4 5 6 radcnvlem2 φseq0+absGXdom
14 7 8 11 12 13 abscvgcvg φseq0+GXdom