Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges at X . (Contributed by Mario Carneiro, 31-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pser.g | |
|
radcnv.a | |
||
psergf.x | |
||
radcnvlem2.y | |
||
radcnvlem2.a | |
||
radcnvlem2.c | |
||
Assertion | radcnvlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pser.g | |
|
2 | radcnv.a | |
|
3 | psergf.x | |
|
4 | radcnvlem2.y | |
|
5 | radcnvlem2.a | |
|
6 | radcnvlem2.c | |
|
7 | nn0uz | |
|
8 | 0zd | |
|
9 | 1 2 3 | psergf | |
10 | fvco3 | |
|
11 | 9 10 | sylan | |
12 | 9 | ffvelcdmda | |
13 | 1 2 3 4 5 6 | radcnvlem2 | |
14 | 7 8 11 12 13 | abscvgcvg | |