Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges absolutely at X . (Contributed by Mario Carneiro, 26-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pser.g | |
|
radcnv.a | |
||
psergf.x | |
||
radcnvlem2.y | |
||
radcnvlem2.a | |
||
radcnvlem2.c | |
||
Assertion | radcnvlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pser.g | |
|
2 | radcnv.a | |
|
3 | psergf.x | |
|
4 | radcnvlem2.y | |
|
5 | radcnvlem2.a | |
|
6 | radcnvlem2.c | |
|
7 | nn0uz | |
|
8 | 1nn0 | |
|
9 | 8 | a1i | |
10 | id | |
|
11 | 2fveq3 | |
|
12 | 10 11 | oveq12d | |
13 | eqid | |
|
14 | ovex | |
|
15 | 12 13 14 | fvmpt | |
16 | 15 | adantl | |
17 | nn0re | |
|
18 | 17 | adantl | |
19 | 1 2 3 | psergf | |
20 | 19 | ffvelcdmda | |
21 | 20 | abscld | |
22 | 18 21 | remulcld | |
23 | 16 22 | eqeltrd | |
24 | fvco3 | |
|
25 | 19 24 | sylan | |
26 | 21 | recnd | |
27 | 25 26 | eqeltrd | |
28 | 12 | cbvmptv | |
29 | 1 2 3 4 5 6 28 | radcnvlem1 | |
30 | 1red | |
|
31 | 1red | |
|
32 | elnnuz | |
|
33 | nnnn0 | |
|
34 | 32 33 | sylbir | |
35 | 34 18 | sylan2 | |
36 | 34 21 | sylan2 | |
37 | 20 | absge0d | |
38 | 34 37 | sylan2 | |
39 | eluzle | |
|
40 | 39 | adantl | |
41 | 31 35 36 38 40 | lemul1ad | |
42 | absidm | |
|
43 | 20 42 | syl | |
44 | 25 | fveq2d | |
45 | 26 | mullidd | |
46 | 43 44 45 | 3eqtr4d | |
47 | 34 46 | sylan2 | |
48 | 16 | oveq2d | |
49 | 22 | recnd | |
50 | 49 | mullidd | |
51 | 48 50 | eqtrd | |
52 | 34 51 | sylan2 | |
53 | 41 47 52 | 3brtr4d | |
54 | 7 9 23 27 29 30 53 | cvgcmpce | |