Metamath Proof Explorer


Theorem radcnvlem2

Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges absolutely at X . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G=xn0Anxn
radcnv.a φA:0
psergf.x φX
radcnvlem2.y φY
radcnvlem2.a φX<Y
radcnvlem2.c φseq0+GYdom
Assertion radcnvlem2 φseq0+absGXdom

Proof

Step Hyp Ref Expression
1 pser.g G=xn0Anxn
2 radcnv.a φA:0
3 psergf.x φX
4 radcnvlem2.y φY
5 radcnvlem2.a φX<Y
6 radcnvlem2.c φseq0+GYdom
7 nn0uz 0=0
8 1nn0 10
9 8 a1i φ10
10 id m=km=k
11 2fveq3 m=kGXm=GXk
12 10 11 oveq12d m=kmGXm=kGXk
13 eqid m0mGXm=m0mGXm
14 ovex kGXkV
15 12 13 14 fvmpt k0m0mGXmk=kGXk
16 15 adantl φk0m0mGXmk=kGXk
17 nn0re k0k
18 17 adantl φk0k
19 1 2 3 psergf φGX:0
20 19 ffvelcdmda φk0GXk
21 20 abscld φk0GXk
22 18 21 remulcld φk0kGXk
23 16 22 eqeltrd φk0m0mGXmk
24 fvco3 GX:0k0absGXk=GXk
25 19 24 sylan φk0absGXk=GXk
26 21 recnd φk0GXk
27 25 26 eqeltrd φk0absGXk
28 12 cbvmptv m0mGXm=k0kGXk
29 1 2 3 4 5 6 28 radcnvlem1 φseq0+m0mGXmdom
30 1red φ1
31 1red φk11
32 elnnuz kk1
33 nnnn0 kk0
34 32 33 sylbir k1k0
35 34 18 sylan2 φk1k
36 34 21 sylan2 φk1GXk
37 20 absge0d φk00GXk
38 34 37 sylan2 φk10GXk
39 eluzle k11k
40 39 adantl φk11k
41 31 35 36 38 40 lemul1ad φk11GXkkGXk
42 absidm GXkGXk=GXk
43 20 42 syl φk0GXk=GXk
44 25 fveq2d φk0absGXk=GXk
45 26 mullidd φk01GXk=GXk
46 43 44 45 3eqtr4d φk0absGXk=1GXk
47 34 46 sylan2 φk1absGXk=1GXk
48 16 oveq2d φk01m0mGXmk=1kGXk
49 22 recnd φk0kGXk
50 49 mullidd φk01kGXk=kGXk
51 48 50 eqtrd φk01m0mGXmk=kGXk
52 34 51 sylan2 φk11m0mGXmk=kGXk
53 41 47 52 3brtr4d φk1absGXk1m0mGXmk
54 7 9 23 27 29 30 53 cvgcmpce φseq0+absGXdom