Metamath Proof Explorer


Theorem abscvgcvg

Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses abscvgcvg.1 Z = M
abscvgcvg.2 φ M
abscvgcvg.3 φ k Z F k = G k
abscvgcvg.4 φ k Z G k
abscvgcvg.5 φ seq M + F dom
Assertion abscvgcvg φ seq M + G dom

Proof

Step Hyp Ref Expression
1 abscvgcvg.1 Z = M
2 abscvgcvg.2 φ M
3 abscvgcvg.3 φ k Z F k = G k
4 abscvgcvg.4 φ k Z G k
5 abscvgcvg.5 φ seq M + F dom
6 uzid M M M
7 2 6 syl φ M M
8 7 1 eleqtrrdi φ M Z
9 4 abscld φ k Z G k
10 3 9 eqeltrd φ k Z F k
11 1red φ 1
12 1 eleq2i k Z k M
13 3 eqcomd φ k Z G k = F k
14 9 13 eqled φ k Z G k F k
15 10 recnd φ k Z F k
16 15 mulid2d φ k Z 1 F k = F k
17 14 16 breqtrrd φ k Z G k 1 F k
18 12 17 sylan2br φ k M G k 1 F k
19 1 8 10 4 5 11 18 cvgcmpce φ seq M + G dom