Metamath Proof Explorer


Theorem radcnvlt2

Description: If X is within the open disk of radius R centered at zero, then the infinite series converges at X . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G=xn0Anxn
radcnv.a φA:0
radcnv.r R=supr|seq0+Grdom*<
radcnvlt.x φX
radcnvlt.a φX<R
Assertion radcnvlt2 φseq0+GXdom

Proof

Step Hyp Ref Expression
1 pser.g G=xn0Anxn
2 radcnv.a φA:0
3 radcnv.r R=supr|seq0+Grdom*<
4 radcnvlt.x φX
5 radcnvlt.a φX<R
6 nn0uz 0=0
7 0zd φ0
8 1 2 4 psergf φGX:0
9 fvco3 GX:0k0absGXk=GXk
10 8 9 sylan φk0absGXk=GXk
11 8 ffvelcdmda φk0GXk
12 id m=km=k
13 2fveq3 m=kGXm=GXk
14 12 13 oveq12d m=kmGXm=kGXk
15 14 cbvmptv m0mGXm=k0kGXk
16 1 2 3 4 5 15 radcnvlt1 φseq0+m0mGXmdomseq0+absGXdom
17 16 simprd φseq0+absGXdom
18 6 7 10 11 17 abscvgcvg φseq0+GXdom