Metamath Proof Explorer


Theorem ranfval

Description: Value of the function generating the set of right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses lanfval.r R = D FuncCat E
lanfval.s S = C FuncCat E
lanfval.c φ C U
lanfval.d φ D V
lanfval.e φ E W
ranfval.o O = oppCat R
ranfval.p P = oppCat S
Assertion ranfval Could not format assertion : No typesetting found for |- ( ph -> ( <. C , D >. Ran E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 lanfval.r R = D FuncCat E
2 lanfval.s S = C FuncCat E
3 lanfval.c φ C U
4 lanfval.d φ D V
5 lanfval.e φ E W
6 ranfval.o O = oppCat R
7 ranfval.p P = oppCat S
8 df-ran Could not format Ran = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) ) : No typesetting found for |- Ran = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) ) with typecode |-
9 8 a1i Could not format ( ph -> Ran = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) ) ) : No typesetting found for |- ( ph -> Ran = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) ) ) with typecode |-
10 fvexd φ p = C D e = E 1 st p V
11 simprl φ p = C D e = E p = C D
12 11 fveq2d φ p = C D e = E 1 st p = 1 st C D
13 op1stg C U D V 1 st C D = C
14 3 4 13 syl2anc φ 1 st C D = C
15 14 adantr φ p = C D e = E 1 st C D = C
16 12 15 eqtrd φ p = C D e = E 1 st p = C
17 fvexd φ p = C D e = E c = C 2 nd p V
18 simplrl φ p = C D e = E c = C p = C D
19 18 fveq2d φ p = C D e = E c = C 2 nd p = 2 nd C D
20 op2ndg C U D V 2 nd C D = D
21 3 4 20 syl2anc φ 2 nd C D = D
22 21 ad2antrr φ p = C D e = E c = C 2 nd C D = D
23 19 22 eqtrd φ p = C D e = E c = C 2 nd p = D
24 simplr φ p = C D e = E c = C d = D c = C
25 simpr φ p = C D e = E c = C d = D d = D
26 24 25 oveq12d φ p = C D e = E c = C d = D c Func d = C Func D
27 simpllr φ p = C D e = E c = C d = D p = C D e = E
28 27 simprd φ p = C D e = E c = C d = D e = E
29 24 28 oveq12d φ p = C D e = E c = C d = D c Func e = C Func E
30 25 28 oveq12d φ p = C D e = E c = C d = D d FuncCat e = D FuncCat E
31 30 fveq2d φ p = C D e = E c = C d = D oppCat d FuncCat e = oppCat D FuncCat E
32 1 fveq2i oppCat R = oppCat D FuncCat E
33 6 32 eqtri O = oppCat D FuncCat E
34 31 33 eqtr4di φ p = C D e = E c = C d = D oppCat d FuncCat e = O
35 24 28 oveq12d φ p = C D e = E c = C d = D c FuncCat e = C FuncCat E
36 35 fveq2d φ p = C D e = E c = C d = D oppCat c FuncCat e = oppCat C FuncCat E
37 2 fveq2i oppCat S = oppCat C FuncCat E
38 7 37 eqtri P = oppCat C FuncCat E
39 36 38 eqtr4di φ p = C D e = E c = C d = D oppCat c FuncCat e = P
40 34 39 oveq12d Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) = ( O UP P ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) = ( O UP P ) ) with typecode |-
41 25 28 opeq12d φ p = C D e = E c = C d = D d e = D E
42 41 fvoveq1d Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( oppFunc ` ( <. d , e >. -o.F f ) ) = ( oppFunc ` ( <. D , E >. -o.F f ) ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( oppFunc ` ( <. d , e >. -o.F f ) ) = ( oppFunc ` ( <. D , E >. -o.F f ) ) ) with typecode |-
43 eqidd φ p = C D e = E c = C d = D x = x
44 40 42 43 oveq123d Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) = ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) = ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) with typecode |-
45 26 29 44 mpoeq123dv Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) with typecode |-
46 17 23 45 csbied2 Could not format ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) : No typesetting found for |- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) with typecode |-
47 10 16 46 csbied2 Could not format ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) : No typesetting found for |- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) with typecode |-
48 3 elexd φ C V
49 4 elexd φ D V
50 48 49 opelxpd φ C D V × V
51 5 elexd φ E V
52 ovex C Func D V
53 ovex C Func E V
54 52 53 mpoex Could not format ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) e. _V : No typesetting found for |- ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) e. _V with typecode |-
55 54 a1i Could not format ( ph -> ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) e. _V ) : No typesetting found for |- ( ph -> ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) e. _V ) with typecode |-
56 9 47 50 51 55 ovmpod Could not format ( ph -> ( <. C , D >. Ran E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) : No typesetting found for |- ( ph -> ( <. C , D >. Ran E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) with typecode |-