Metamath Proof Explorer


Theorem rankfilimbi

Description: If all elements in a finite well-founded set have a rank less than a limit ordinal, then the rank of that set is also less than the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion rankfilimbi A Fin A R1 On x A rank x B Lim B rank A B

Proof

Step Hyp Ref Expression
1 simpl A Fin A R1 On x A rank x B Lim B A Fin A R1 On
2 limsuc Lim B rank x B suc rank x B
3 2 ralbidv Lim B x A rank x B x A suc rank x B
4 3 biimpd Lim B x A rank x B x A suc rank x B
5 fvex rank x V
6 5 sucex suc rank x V
7 6 rgenw x A suc rank x V
8 uniiunlem x A suc rank x V x A suc rank x B z | x A z = suc rank x B
9 7 8 ax-mp x A suc rank x B z | x A z = suc rank x B
10 4 9 imbitrdi Lim B x A rank x B z | x A z = suc rank x B
11 10 impcom x A rank x B Lim B z | x A z = suc rank x B
12 11 adantl A Fin A R1 On x A rank x B Lim B z | x A z = suc rank x B
13 limord Lim B Ord B
14 0ellim Lim B B
15 14 ne0d Lim B B
16 13 15 jca Lim B Ord B B
17 16 ad2antll A Fin A R1 On x A rank x B Lim B Ord B B
18 rankval4b A R1 On rank A = x A suc rank x
19 6 dfiun2 x A suc rank x = z | x A z = suc rank x
20 18 19 eqtrdi A R1 On rank A = z | x A z = suc rank x
21 20 adantl A Fin A R1 On rank A = z | x A z = suc rank x
22 21 3ad2ant1 A Fin A R1 On z | x A z = suc rank x B Ord B B rank A = z | x A z = suc rank x
23 abrexfi A Fin z | x A z = suc rank x Fin
24 fissorduni z | x A z = suc rank x Fin z | x A z = suc rank x B Ord B B z | x A z = suc rank x B
25 23 24 syl3an1 A Fin z | x A z = suc rank x B Ord B B z | x A z = suc rank x B
26 25 3adant1r A Fin A R1 On z | x A z = suc rank x B Ord B B z | x A z = suc rank x B
27 22 26 eqeltrd A Fin A R1 On z | x A z = suc rank x B Ord B B rank A B
28 1 12 17 27 syl3anc A Fin A R1 On x A rank x B Lim B rank A B