Metamath Proof Explorer


Theorem rdgprc0

Description: The value of the recursive definition generator at (/) when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rdgprc0 ¬IVrecFI=

Proof

Step Hyp Ref Expression
1 0elon On
2 rdgval OnrecFI=gVifg=IifLimdomgrangFgdomgrecFI
3 1 2 ax-mp recFI=gVifg=IifLimdomgrangFgdomgrecFI
4 res0 recFI=
5 4 fveq2i gVifg=IifLimdomgrangFgdomgrecFI=gVifg=IifLimdomgrangFgdomg
6 3 5 eqtri recFI=gVifg=IifLimdomgrangFgdomg
7 eqeq1 g=g==
8 dmeq g=domg=dom
9 limeq domg=domLimdomgLimdom
10 8 9 syl g=LimdomgLimdom
11 rneq g=rang=ran
12 11 unieqd g=rang=ran
13 id g=g=
14 8 unieqd g=domg=dom
15 13 14 fveq12d g=gdomg=dom
16 15 fveq2d g=Fgdomg=Fdom
17 10 12 16 ifbieq12d g=ifLimdomgrangFgdomg=ifLimdomranFdom
18 7 17 ifbieq2d g=ifg=IifLimdomgrangFgdomg=if=IifLimdomranFdom
19 18 eleq1d g=ifg=IifLimdomgrangFgdomgVif=IifLimdomranFdomV
20 eqid gVifg=IifLimdomgrangFgdomg=gVifg=IifLimdomgrangFgdomg
21 20 dmmpt domgVifg=IifLimdomgrangFgdomg=gV|ifg=IifLimdomgrangFgdomgV
22 19 21 elrab2 domgVifg=IifLimdomgrangFgdomgVif=IifLimdomranFdomV
23 eqid =
24 23 iftruei if=IifLimdomranFdom=I
25 24 eleq1i if=IifLimdomranFdomVIV
26 25 biimpi if=IifLimdomranFdomVIV
27 22 26 simplbiim domgVifg=IifLimdomgrangFgdomgIV
28 ndmfv ¬domgVifg=IifLimdomgrangFgdomggVifg=IifLimdomgrangFgdomg=
29 27 28 nsyl5 ¬IVgVifg=IifLimdomgrangFgdomg=
30 6 29 eqtrid ¬IVrecFI=