Metamath Proof Explorer


Theorem reglogmul

Description: Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbmul instead.

Ref Expression
Assertion reglogmul A+B+C+C1logABlogC=logAlogC+logBlogC

Proof

Step Hyp Ref Expression
1 relogmul A+B+logAB=logA+logB
2 1 3adant3 A+B+C+C1logAB=logA+logB
3 2 oveq1d A+B+C+C1logABlogC=logA+logBlogC
4 relogcl A+logA
5 4 recnd A+logA
6 5 3ad2ant1 A+B+C+C1logA
7 relogcl B+logB
8 7 recnd B+logB
9 8 3ad2ant2 A+B+C+C1logB
10 relogcl C+logC
11 10 recnd C+logC
12 11 adantr C+C1logC
13 12 3ad2ant3 A+B+C+C1logC
14 logne0 C+C1logC0
15 14 3ad2ant3 A+B+C+C1logC0
16 6 9 13 15 divdird A+B+C+C1logA+logBlogC=logAlogC+logBlogC
17 3 16 eqtrd A+B+C+C1logABlogC=logAlogC+logBlogC