Metamath Proof Explorer


Theorem regt1loggt0

Description: The natural logarithm for a real number greater than 1 is greater than 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion regt1loggt0 B1+∞0<logB

Proof

Step Hyp Ref Expression
1 1xr 1*
2 elioopnf 1*B1+∞B1<B
3 1 2 ax-mp B1+∞B1<B
4 3 simprbi B1+∞1<B
5 log1 log1=0
6 5 eqcomi 0=log1
7 6 a1i B1+∞0=log1
8 7 breq1d B1+∞0<logBlog1<logB
9 1rp 1+
10 0lt1 0<1
11 0red B0
12 1red B1
13 id BB
14 lttr 01B0<11<B0<B
15 11 12 13 14 syl3anc B0<11<B0<B
16 10 15 mpani B1<B0<B
17 16 imdistani B1<BB0<B
18 elrp B+B0<B
19 17 3 18 3imtr4i B1+∞B+
20 logltb 1+B+1<Blog1<logB
21 9 19 20 sylancr B1+∞1<Blog1<logB
22 8 21 bitr4d B1+∞0<logB1<B
23 4 22 mpbird B1+∞0<logB