Metamath Proof Explorer


Theorem relexprelg

Description: The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexprelg N 0 R V N = 1 Rel R Rel R r N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 eqeq1 n = 1 n = 1 1 = 1
3 2 imbi1d n = 1 n = 1 Rel R 1 = 1 Rel R
4 3 anbi2d n = 1 R V n = 1 Rel R R V 1 = 1 Rel R
5 oveq2 n = 1 R r n = R r 1
6 5 releqd n = 1 Rel R r n Rel R r 1
7 4 6 imbi12d n = 1 R V n = 1 Rel R Rel R r n R V 1 = 1 Rel R Rel R r 1
8 eqeq1 n = m n = 1 m = 1
9 8 imbi1d n = m n = 1 Rel R m = 1 Rel R
10 9 anbi2d n = m R V n = 1 Rel R R V m = 1 Rel R
11 oveq2 n = m R r n = R r m
12 11 releqd n = m Rel R r n Rel R r m
13 10 12 imbi12d n = m R V n = 1 Rel R Rel R r n R V m = 1 Rel R Rel R r m
14 eqeq1 n = m + 1 n = 1 m + 1 = 1
15 14 imbi1d n = m + 1 n = 1 Rel R m + 1 = 1 Rel R
16 15 anbi2d n = m + 1 R V n = 1 Rel R R V m + 1 = 1 Rel R
17 oveq2 n = m + 1 R r n = R r m + 1
18 17 releqd n = m + 1 Rel R r n Rel R r m + 1
19 16 18 imbi12d n = m + 1 R V n = 1 Rel R Rel R r n R V m + 1 = 1 Rel R Rel R r m + 1
20 eqeq1 n = N n = 1 N = 1
21 20 imbi1d n = N n = 1 Rel R N = 1 Rel R
22 21 anbi2d n = N R V n = 1 Rel R R V N = 1 Rel R
23 oveq2 n = N R r n = R r N
24 23 releqd n = N Rel R r n Rel R r N
25 22 24 imbi12d n = N R V n = 1 Rel R Rel R r n R V N = 1 Rel R Rel R r N
26 eqid 1 = 1
27 pm2.27 1 = 1 1 = 1 Rel R Rel R
28 26 27 ax-mp 1 = 1 Rel R Rel R
29 28 adantl R V 1 = 1 Rel R Rel R
30 relexp1g R V R r 1 = R
31 30 adantr R V 1 = 1 Rel R R r 1 = R
32 31 releqd R V 1 = 1 Rel R Rel R r 1 Rel R
33 29 32 mpbird R V 1 = 1 Rel R Rel R r 1
34 relco Rel R r m R
35 relexpsucnnr R V m R r m + 1 = R r m R
36 35 ancoms m R V R r m + 1 = R r m R
37 36 releqd m R V Rel R r m + 1 Rel R r m R
38 34 37 mpbiri m R V Rel R r m + 1
39 38 a1d m R V m + 1 = 1 Rel R Rel R r m + 1
40 39 expimpd m R V m + 1 = 1 Rel R Rel R r m + 1
41 40 a1d m R V m = 1 Rel R Rel R r m R V m + 1 = 1 Rel R Rel R r m + 1
42 7 13 19 25 33 41 nnind N R V N = 1 Rel R Rel R r N
43 relexp0rel R V Rel R r 0
44 43 adantl N = 0 R V Rel R r 0
45 simpl N = 0 R V N = 0
46 45 oveq2d N = 0 R V R r N = R r 0
47 46 releqd N = 0 R V Rel R r N Rel R r 0
48 44 47 mpbird N = 0 R V Rel R r N
49 48 a1d N = 0 R V N = 1 Rel R Rel R r N
50 49 expimpd N = 0 R V N = 1 Rel R Rel R r N
51 42 50 jaoi N N = 0 R V N = 1 Rel R Rel R r N
52 1 51 sylbi N 0 R V N = 1 Rel R Rel R r N
53 52 3impib N 0 R V N = 1 Rel R Rel R r N