Metamath Proof Explorer


Theorem rellan

Description: The set of left Kan extensions is a relation. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Assertion rellan Could not format assertion : No typesetting found for |- Rel ( F ( P Lan E ) X ) with typecode |-

Proof

Step Hyp Ref Expression
1 rel0 Rel
2 releq Could not format ( ( F ( P Lan E ) X ) = (/) -> ( Rel ( F ( P Lan E ) X ) <-> Rel (/) ) ) : No typesetting found for |- ( ( F ( P Lan E ) X ) = (/) -> ( Rel ( F ( P Lan E ) X ) <-> Rel (/) ) ) with typecode |-
3 1 2 mpbiri Could not format ( ( F ( P Lan E ) X ) = (/) -> Rel ( F ( P Lan E ) X ) ) : No typesetting found for |- ( ( F ( P Lan E ) X ) = (/) -> Rel ( F ( P Lan E ) X ) ) with typecode |-
4 n0 Could not format ( ( F ( P Lan E ) X ) =/= (/) <-> E. x x e. ( F ( P Lan E ) X ) ) : No typesetting found for |- ( ( F ( P Lan E ) X ) =/= (/) <-> E. x x e. ( F ( P Lan E ) X ) ) with typecode |-
5 relup Could not format Rel ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) : No typesetting found for |- Rel ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) with typecode |-
6 ne0i Could not format ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) =/= (/) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) =/= (/) ) with typecode |-
7 oveq Could not format ( ( P Lan E ) = (/) -> ( F ( P Lan E ) X ) = ( F (/) X ) ) : No typesetting found for |- ( ( P Lan E ) = (/) -> ( F ( P Lan E ) X ) = ( F (/) X ) ) with typecode |-
8 0ov F X =
9 7 8 eqtrdi Could not format ( ( P Lan E ) = (/) -> ( F ( P Lan E ) X ) = (/) ) : No typesetting found for |- ( ( P Lan E ) = (/) -> ( F ( P Lan E ) X ) = (/) ) with typecode |-
10 9 necon3i Could not format ( ( F ( P Lan E ) X ) =/= (/) -> ( P Lan E ) =/= (/) ) : No typesetting found for |- ( ( F ( P Lan E ) X ) =/= (/) -> ( P Lan E ) =/= (/) ) with typecode |-
11 n0 Could not format ( ( P Lan E ) =/= (/) <-> E. x x e. ( P Lan E ) ) : No typesetting found for |- ( ( P Lan E ) =/= (/) <-> E. x x e. ( P Lan E ) ) with typecode |-
12 df-lan Could not format Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) : No typesetting found for |- Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) with typecode |-
13 12 elmpocl1 Could not format ( x e. ( P Lan E ) -> P e. ( _V X. _V ) ) : No typesetting found for |- ( x e. ( P Lan E ) -> P e. ( _V X. _V ) ) with typecode |-
14 1st2nd2 P V × V P = 1 st P 2 nd P
15 13 14 syl Could not format ( x e. ( P Lan E ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) : No typesetting found for |- ( x e. ( P Lan E ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) with typecode |-
16 15 exlimiv Could not format ( E. x x e. ( P Lan E ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) : No typesetting found for |- ( E. x x e. ( P Lan E ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) with typecode |-
17 11 16 sylbi Could not format ( ( P Lan E ) =/= (/) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) : No typesetting found for |- ( ( P Lan E ) =/= (/) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) with typecode |-
18 6 10 17 3syl Could not format ( x e. ( F ( P Lan E ) X ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) with typecode |-
19 18 oveq1d Could not format ( x e. ( F ( P Lan E ) X ) -> ( P Lan E ) = ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( P Lan E ) = ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) ) with typecode |-
20 19 oveqd Could not format ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) = ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) = ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) ) with typecode |-
21 eqid 2 nd P FuncCat E = 2 nd P FuncCat E
22 eqid 1 st P FuncCat E = 1 st P FuncCat E
23 id Could not format ( x e. ( F ( P Lan E ) X ) -> x e. ( F ( P Lan E ) X ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> x e. ( F ( P Lan E ) X ) ) with typecode |-
24 23 20 eleqtrd Could not format ( x e. ( F ( P Lan E ) X ) -> x e. ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> x e. ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) ) with typecode |-
25 lanrcl Could not format ( x e. ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) -> ( F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) /\ X e. ( ( 1st ` P ) Func E ) ) ) : No typesetting found for |- ( x e. ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) -> ( F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) /\ X e. ( ( 1st ` P ) Func E ) ) ) with typecode |-
26 24 25 syl Could not format ( x e. ( F ( P Lan E ) X ) -> ( F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) /\ X e. ( ( 1st ` P ) Func E ) ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) /\ X e. ( ( 1st ` P ) Func E ) ) ) with typecode |-
27 26 simpld Could not format ( x e. ( F ( P Lan E ) X ) -> F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) ) with typecode |-
28 26 simprd Could not format ( x e. ( F ( P Lan E ) X ) -> X e. ( ( 1st ` P ) Func E ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> X e. ( ( 1st ` P ) Func E ) ) with typecode |-
29 eqidd Could not format ( x e. ( F ( P Lan E ) X ) -> ( <. ( 2nd ` P ) , E >. -o.F F ) = ( <. ( 2nd ` P ) , E >. -o.F F ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( <. ( 2nd ` P ) , E >. -o.F F ) = ( <. ( 2nd ` P ) , E >. -o.F F ) ) with typecode |-
30 21 22 27 28 29 lanval Could not format ( x e. ( F ( P Lan E ) X ) -> ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) = ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) = ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) with typecode |-
31 20 30 eqtrd Could not format ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) = ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) = ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) with typecode |-
32 31 releqd Could not format ( x e. ( F ( P Lan E ) X ) -> ( Rel ( F ( P Lan E ) X ) <-> Rel ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> ( Rel ( F ( P Lan E ) X ) <-> Rel ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) ) with typecode |-
33 5 32 mpbiri Could not format ( x e. ( F ( P Lan E ) X ) -> Rel ( F ( P Lan E ) X ) ) : No typesetting found for |- ( x e. ( F ( P Lan E ) X ) -> Rel ( F ( P Lan E ) X ) ) with typecode |-
34 33 exlimiv Could not format ( E. x x e. ( F ( P Lan E ) X ) -> Rel ( F ( P Lan E ) X ) ) : No typesetting found for |- ( E. x x e. ( F ( P Lan E ) X ) -> Rel ( F ( P Lan E ) X ) ) with typecode |-
35 4 34 sylbi Could not format ( ( F ( P Lan E ) X ) =/= (/) -> Rel ( F ( P Lan E ) X ) ) : No typesetting found for |- ( ( F ( P Lan E ) X ) =/= (/) -> Rel ( F ( P Lan E ) X ) ) with typecode |-
36 3 35 pm2.61ine Could not format Rel ( F ( P Lan E ) X ) : No typesetting found for |- Rel ( F ( P Lan E ) X ) with typecode |-