Description: There is exactly one representation with no elements (an empty sum), only for M = 0 . (Contributed by Thierry Arnoux, 2-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reprval.a | |
|
reprval.m | |
||
reprval.s | |
||
Assertion | repr0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reprval.a | |
|
2 | reprval.m | |
|
3 | reprval.s | |
|
4 | 0nn0 | |
|
5 | 4 | a1i | |
6 | 1 2 5 | reprval | |
7 | fzo0 | |
|
8 | 7 | sumeq1i | |
9 | sum0 | |
|
10 | 8 9 | eqtri | |
11 | 10 | eqeq1i | |
12 | 11 | a1i | |
13 | 0ex | |
|
14 | 13 | snid | |
15 | nnex | |
|
16 | 15 | a1i | |
17 | 16 1 | ssexd | |
18 | mapdm0 | |
|
19 | 17 18 | syl | |
20 | 14 19 | eleqtrrid | |
21 | 7 | oveq2i | |
22 | 20 21 | eleqtrrdi | |
23 | 22 | adantr | |
24 | simpr | |
|
25 | 24 | eqcomd | |
26 | 21 19 | eqtrid | |
27 | 26 | eleq2d | |
28 | 27 | biimpa | |
29 | elsni | |
|
30 | 28 29 | syl | |
31 | 30 | ad4ant13 | |
32 | 12 23 25 31 | rabeqsnd | |
33 | 32 | eqcomd | |
34 | 10 | a1i | |
35 | simplr | |
|
36 | 35 | neqned | |
37 | 36 | necomd | |
38 | 34 37 | eqnetrd | |
39 | 38 | neneqd | |
40 | 39 | ralrimiva | |
41 | rabeq0 | |
|
42 | 40 41 | sylibr | |
43 | 42 | eqcomd | |
44 | 33 43 | ifeqda | |
45 | 6 44 | eqtr4d | |