Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
|
2 |
|
reprval.m |
|
3 |
|
reprval.s |
|
4 |
|
0nn0 |
|
5 |
4
|
a1i |
|
6 |
1 2 5
|
reprval |
|
7 |
|
fzo0 |
|
8 |
7
|
sumeq1i |
|
9 |
|
sum0 |
|
10 |
8 9
|
eqtri |
|
11 |
10
|
eqeq1i |
|
12 |
11
|
a1i |
|
13 |
|
0ex |
|
14 |
13
|
snid |
|
15 |
|
nnex |
|
16 |
15
|
a1i |
|
17 |
16 1
|
ssexd |
|
18 |
|
mapdm0 |
|
19 |
17 18
|
syl |
|
20 |
14 19
|
eleqtrrid |
|
21 |
7
|
oveq2i |
|
22 |
20 21
|
eleqtrrdi |
|
23 |
22
|
adantr |
|
24 |
|
simpr |
|
25 |
24
|
eqcomd |
|
26 |
21 19
|
eqtrid |
|
27 |
26
|
eleq2d |
|
28 |
27
|
biimpa |
|
29 |
|
elsni |
|
30 |
28 29
|
syl |
|
31 |
30
|
ad4ant13 |
|
32 |
12 23 25 31
|
rabeqsnd |
|
33 |
32
|
eqcomd |
|
34 |
10
|
a1i |
|
35 |
|
simplr |
|
36 |
35
|
neqned |
|
37 |
36
|
necomd |
|
38 |
34 37
|
eqnetrd |
|
39 |
38
|
neneqd |
|
40 |
39
|
ralrimiva |
|
41 |
|
rabeq0 |
|
42 |
40 41
|
sylibr |
|
43 |
42
|
eqcomd |
|
44 |
33 43
|
ifeqda |
|
45 |
6 44
|
eqtr4d |
|