| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reprval.a |  | 
						
							| 2 |  | reprval.m |  | 
						
							| 3 |  | reprval.s |  | 
						
							| 4 |  | 0nn0 |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 | 1 2 5 | reprval |  | 
						
							| 7 |  | fzo0 |  | 
						
							| 8 | 7 | sumeq1i |  | 
						
							| 9 |  | sum0 |  | 
						
							| 10 | 8 9 | eqtri |  | 
						
							| 11 | 10 | eqeq1i |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 |  | 0ex |  | 
						
							| 14 | 13 | snid |  | 
						
							| 15 |  | nnex |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 16 1 | ssexd |  | 
						
							| 18 |  | mapdm0 |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 14 19 | eleqtrrid |  | 
						
							| 21 | 7 | oveq2i |  | 
						
							| 22 | 20 21 | eleqtrrdi |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 24 | eqcomd |  | 
						
							| 26 | 21 19 | eqtrid |  | 
						
							| 27 | 26 | eleq2d |  | 
						
							| 28 | 27 | biimpa |  | 
						
							| 29 |  | elsni |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 30 | ad4ant13 |  | 
						
							| 32 | 12 23 25 31 | rabeqsnd |  | 
						
							| 33 | 32 | eqcomd |  | 
						
							| 34 | 10 | a1i |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 | 35 | neqned |  | 
						
							| 37 | 36 | necomd |  | 
						
							| 38 | 34 37 | eqnetrd |  | 
						
							| 39 | 38 | neneqd |  | 
						
							| 40 | 39 | ralrimiva |  | 
						
							| 41 |  | rabeq0 |  | 
						
							| 42 | 40 41 | sylibr |  | 
						
							| 43 | 42 | eqcomd |  | 
						
							| 44 | 33 43 | ifeqda |  | 
						
							| 45 | 6 44 | eqtr4d |  |