Metamath Proof Explorer


Theorem repr0

Description: There is exactly one representation with no elements (an empty sum), only for M = 0 . (Contributed by Thierry Arnoux, 2-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
Assertion repr0 φArepr0M=ifM=0

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 0nn0 00
5 4 a1i φ00
6 1 2 5 reprval φArepr0M=cA0..^0|a0..^0ca=M
7 fzo0 0..^0=
8 7 sumeq1i a0..^0ca=aca
9 sum0 aca=0
10 8 9 eqtri a0..^0ca=0
11 10 eqeq1i a0..^0ca=M0=M
12 11 a1i c=a0..^0ca=M0=M
13 0ex V
14 13 snid
15 nnex V
16 15 a1i φV
17 16 1 ssexd φAV
18 mapdm0 AVA=
19 17 18 syl φA=
20 14 19 eleqtrrid φA
21 7 oveq2i A0..^0=A
22 20 21 eleqtrrdi φA0..^0
23 22 adantr φM=0A0..^0
24 simpr φM=0M=0
25 24 eqcomd φM=00=M
26 21 19 eqtrid φA0..^0=
27 26 eleq2d φcA0..^0c
28 27 biimpa φcA0..^0c
29 elsni cc=
30 28 29 syl φcA0..^0c=
31 30 ad4ant13 φM=0cA0..^0a0..^0ca=Mc=
32 12 23 25 31 rabeqsnd φM=0cA0..^0|a0..^0ca=M=
33 32 eqcomd φM=0=cA0..^0|a0..^0ca=M
34 10 a1i φ¬M=0cA0..^0a0..^0ca=0
35 simplr φ¬M=0cA0..^0¬M=0
36 35 neqned φ¬M=0cA0..^0M0
37 36 necomd φ¬M=0cA0..^00M
38 34 37 eqnetrd φ¬M=0cA0..^0a0..^0caM
39 38 neneqd φ¬M=0cA0..^0¬a0..^0ca=M
40 39 ralrimiva φ¬M=0cA0..^0¬a0..^0ca=M
41 rabeq0 cA0..^0|a0..^0ca=M=cA0..^0¬a0..^0ca=M
42 40 41 sylibr φ¬M=0cA0..^0|a0..^0ca=M=
43 42 eqcomd φ¬M=0=cA0..^0|a0..^0ca=M
44 33 43 ifeqda φifM=0=cA0..^0|a0..^0ca=M
45 6 44 eqtr4d φArepr0M=ifM=0