Metamath Proof Explorer


Theorem reprle

Description: Upper bound to the terms in the representations of M as the sum of S nonnegative integers from set A . (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
reprf.c φCAreprSM
reprle.x φX0..^S
Assertion reprle φCXM

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 reprf.c φCAreprSM
5 reprle.x φX0..^S
6 fveq2 a=XCa=CX
7 fzofi 0..^SFin
8 7 a1i φ0..^SFin
9 1 2 3 4 reprsum φa0..^SCa=M
10 1 adantr φa0..^SA
11 1 2 3 4 reprf φC:0..^SA
12 11 ffvelcdmda φa0..^SCaA
13 10 12 sseldd φa0..^SCa
14 13 nnrpd φa0..^SCa+
15 6 8 9 14 5 fsumub φCXM