Metamath Proof Explorer


Theorem resf2nd

Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resf1st.f φFV
resf1st.h φHW
resf1st.s φHFnS×S
resf2nd.x φXS
resf2nd.y φYS
Assertion resf2nd φX2ndFfHY=X2ndFYXHY

Proof

Step Hyp Ref Expression
1 resf1st.f φFV
2 resf1st.h φHW
3 resf1st.s φHFnS×S
4 resf2nd.x φXS
5 resf2nd.y φYS
6 df-ov X2ndFfHY=2ndFfHXY
7 1 2 resfval φFfH=1stFdomdomHzdomH2ndFzHz
8 7 fveq2d φ2ndFfH=2nd1stFdomdomHzdomH2ndFzHz
9 fvex 1stFV
10 9 resex 1stFdomdomHV
11 dmexg HWdomHV
12 mptexg domHVzdomH2ndFzHzV
13 2 11 12 3syl φzdomH2ndFzHzV
14 op2ndg 1stFdomdomHVzdomH2ndFzHzV2nd1stFdomdomHzdomH2ndFzHz=zdomH2ndFzHz
15 10 13 14 sylancr φ2nd1stFdomdomHzdomH2ndFzHz=zdomH2ndFzHz
16 8 15 eqtrd φ2ndFfH=zdomH2ndFzHz
17 simpr φz=XYz=XY
18 17 fveq2d φz=XY2ndFz=2ndFXY
19 df-ov X2ndFY=2ndFXY
20 18 19 eqtr4di φz=XY2ndFz=X2ndFY
21 17 fveq2d φz=XYHz=HXY
22 df-ov XHY=HXY
23 21 22 eqtr4di φz=XYHz=XHY
24 20 23 reseq12d φz=XY2ndFzHz=X2ndFYXHY
25 4 5 opelxpd φXYS×S
26 3 fndmd φdomH=S×S
27 25 26 eleqtrrd φXYdomH
28 ovex X2ndFYV
29 28 resex X2ndFYXHYV
30 29 a1i φX2ndFYXHYV
31 16 24 27 30 fvmptd φ2ndFfHXY=X2ndFYXHY
32 6 31 eqtrid φX2ndFfHY=X2ndFYXHY