Metamath Proof Explorer


Theorem resinsnALT

Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion resinsnALT F A B = ¬ B dom F A

Proof

Step Hyp Ref Expression
1 relres Rel F A B
2 reldm0 Rel F A B F A B = dom F A B =
3 1 2 ax-mp F A B = dom F A B =
4 dmres dom F A B = A B dom F
5 incom A B dom F = dom F A B
6 4 5 eqtri dom F A B = dom F A B
7 6 eqeq1i dom F A B = dom F A B =
8 elin B dom F A B dom F B A
9 ancom B dom F B A B A B dom F
10 snssi B A B A
11 incom A B = B A
12 dfss2 B A B A = B
13 12 biimpi B A B A = B
14 11 13 eqtrid B A A B = B
15 10 14 syl B A A B = B
16 15 ineq2d B A dom F A B = dom F B
17 16 eqeq1d B A dom F A B = dom F B =
18 disjsn dom F B = ¬ B dom F
19 17 18 bitrdi B A dom F A B = ¬ B dom F
20 disjsn A B = ¬ B A
21 20 biimpri ¬ B A A B =
22 21 ineq2d ¬ B A dom F A B = dom F
23 in0 dom F =
24 22 23 eqtrdi ¬ B A dom F A B =
25 19 24 resinsnlem B A B dom F ¬ dom F A B =
26 8 9 25 3bitri B dom F A ¬ dom F A B =
27 26 con2bii dom F A B = ¬ B dom F A
28 3 7 27 3bitri F A B = ¬ B dom F A