Metamath Proof Explorer


Theorem resoprab

Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007)

Ref Expression
Assertion resoprab xyz|φA×B=xyz|xAyBφ

Proof

Step Hyp Ref Expression
1 resopab wz|xyw=xyφA×B=wz|wA×Bxyw=xyφ
2 19.42vv xywA×Bw=xyφwA×Bxyw=xyφ
3 an12 wA×Bw=xyφw=xywA×Bφ
4 eleq1 w=xywA×BxyA×B
5 opelxp xyA×BxAyB
6 4 5 bitrdi w=xywA×BxAyB
7 6 anbi1d w=xywA×BφxAyBφ
8 7 pm5.32i w=xywA×Bφw=xyxAyBφ
9 3 8 bitri wA×Bw=xyφw=xyxAyBφ
10 9 2exbii xywA×Bw=xyφxyw=xyxAyBφ
11 2 10 bitr3i wA×Bxyw=xyφxyw=xyxAyBφ
12 11 opabbii wz|wA×Bxyw=xyφ=wz|xyw=xyxAyBφ
13 1 12 eqtri wz|xyw=xyφA×B=wz|xyw=xyxAyBφ
14 dfoprab2 xyz|φ=wz|xyw=xyφ
15 14 reseq1i xyz|φA×B=wz|xyw=xyφA×B
16 dfoprab2 xyz|xAyBφ=wz|xyw=xyxAyBφ
17 13 15 16 3eqtr4i xyz|φA×B=xyz|xAyBφ