Metamath Proof Explorer


Theorem resrhm

Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Hypothesis resrhm.u U = S 𝑠 X
Assertion resrhm F S RingHom T X SubRing S F X U RingHom T

Proof

Step Hyp Ref Expression
1 resrhm.u U = S 𝑠 X
2 rhmrcl2 F S RingHom T T Ring
3 1 subrgring X SubRing S U Ring
4 2 3 anim12ci F S RingHom T X SubRing S U Ring T Ring
5 rhmghm F S RingHom T F S GrpHom T
6 subrgsubg X SubRing S X SubGrp S
7 1 resghm F S GrpHom T X SubGrp S F X U GrpHom T
8 5 6 7 syl2an F S RingHom T X SubRing S F X U GrpHom T
9 eqid mulGrp S = mulGrp S
10 eqid mulGrp T = mulGrp T
11 9 10 rhmmhm F S RingHom T F mulGrp S MndHom mulGrp T
12 9 subrgsubm X SubRing S X SubMnd mulGrp S
13 eqid mulGrp S 𝑠 X = mulGrp S 𝑠 X
14 13 resmhm F mulGrp S MndHom mulGrp T X SubMnd mulGrp S F X mulGrp S 𝑠 X MndHom mulGrp T
15 11 12 14 syl2an F S RingHom T X SubRing S F X mulGrp S 𝑠 X MndHom mulGrp T
16 rhmrcl1 F S RingHom T S Ring
17 1 9 mgpress S Ring X SubRing S mulGrp S 𝑠 X = mulGrp U
18 16 17 sylan F S RingHom T X SubRing S mulGrp S 𝑠 X = mulGrp U
19 18 oveq1d F S RingHom T X SubRing S mulGrp S 𝑠 X MndHom mulGrp T = mulGrp U MndHom mulGrp T
20 15 19 eleqtrd F S RingHom T X SubRing S F X mulGrp U MndHom mulGrp T
21 8 20 jca F S RingHom T X SubRing S F X U GrpHom T F X mulGrp U MndHom mulGrp T
22 eqid mulGrp U = mulGrp U
23 22 10 isrhm F X U RingHom T U Ring T Ring F X U GrpHom T F X mulGrp U MndHom mulGrp T
24 4 21 23 sylanbrc F S RingHom T X SubRing S F X U RingHom T