Metamath Proof Explorer


Theorem ressbas

Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014) (Proof shortened by AV, 7-Nov-2024)

Ref Expression
Hypotheses ressbas.r R=W𝑠A
ressbas.b B=BaseW
Assertion ressbas AVAB=BaseR

Proof

Step Hyp Ref Expression
1 ressbas.r R=W𝑠A
2 ressbas.b B=BaseW
3 simp1 BAWVAVBA
4 sseqin2 BAAB=B
5 3 4 sylib BAWVAVAB=B
6 1 2 ressid2 BAWVAVR=W
7 6 fveq2d BAWVAVBaseR=BaseW
8 2 5 7 3eqtr4a BAWVAVAB=BaseR
9 8 3expib BAWVAVAB=BaseR
10 simp2 ¬BAWVAVWV
11 2 fvexi BV
12 11 inex2 ABV
13 baseid Base=SlotBasendx
14 13 setsid WVABVAB=BaseWsSetBasendxAB
15 10 12 14 sylancl ¬BAWVAVAB=BaseWsSetBasendxAB
16 1 2 ressval2 ¬BAWVAVR=WsSetBasendxAB
17 16 fveq2d ¬BAWVAVBaseR=BaseWsSetBasendxAB
18 15 17 eqtr4d ¬BAWVAVAB=BaseR
19 18 3expib ¬BAWVAVAB=BaseR
20 9 19 pm2.61i WVAVAB=BaseR
21 in0 A=
22 fvprc ¬WVBaseW=
23 2 22 eqtrid ¬WVB=
24 23 ineq2d ¬WVAB=A
25 21 24 22 3eqtr4a ¬WVAB=BaseW
26 base0 =Base
27 26 eqcomi Base=
28 reldmress Reldom𝑠
29 27 1 28 oveqprc ¬WVBaseW=BaseR
30 25 29 eqtrd ¬WVAB=BaseR
31 30 adantr ¬WVAVAB=BaseR
32 20 31 pm2.61ian AVAB=BaseR