Metamath Proof Explorer


Theorem ressmulgnn0

Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017)

Ref Expression
Hypotheses ressmulgnn.1 H=G𝑠A
ressmulgnn.2 ABaseG
ressmulgnn.3 ˙=G
ressmulgnn.4 I=invgG
ressmulgnn0.4 0G=0H
Assertion ressmulgnn0 N0XANHX=N˙X

Proof

Step Hyp Ref Expression
1 ressmulgnn.1 H=G𝑠A
2 ressmulgnn.2 ABaseG
3 ressmulgnn.3 ˙=G
4 ressmulgnn.4 I=invgG
5 ressmulgnn0.4 0G=0H
6 simpr N0XANN
7 simplr N0XANXA
8 1 2 3 4 ressmulgnn NXANHX=N˙X
9 6 7 8 syl2anc N0XANNHX=N˙X
10 simplr N0XAN=0XA
11 eqid BaseG=BaseG
12 1 11 ressbas2 ABaseGA=BaseH
13 2 12 ax-mp A=BaseH
14 eqid H=H
15 13 5 14 mulg0 XA0HX=0G
16 10 15 syl N0XAN=00HX=0G
17 simpr N0XAN=0N=0
18 17 oveq1d N0XAN=0NHX=0HX
19 2 10 sselid N0XAN=0XBaseG
20 eqid 0G=0G
21 11 20 3 mulg0 XBaseG0˙X=0G
22 19 21 syl N0XAN=00˙X=0G
23 16 18 22 3eqtr4d N0XAN=0NHX=0˙X
24 17 oveq1d N0XAN=0N˙X=0˙X
25 23 24 eqtr4d N0XAN=0NHX=N˙X
26 elnn0 N0NN=0
27 26 biimpi N0NN=0
28 27 adantr N0XANN=0
29 9 25 28 mpjaodan N0XANHX=N˙X