Metamath Proof Explorer


Theorem ressprs

Description: The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015)

Ref Expression
Hypothesis ressprs.b B=BaseK
Assertion ressprs KProsetABK𝑠AProset

Proof

Step Hyp Ref Expression
1 ressprs.b B=BaseK
2 ovexd KProsetABK𝑠AV
3 simp-4l KProsetABxAyAzAKProset
4 simp-4r KProsetABxAyAzAAB
5 simpllr KProsetABxAyAzAxA
6 4 5 sseldd KProsetABxAyAzAxB
7 3 6 jca KProsetABxAyAzAKProsetxB
8 simplr KProsetABxAyAzAyA
9 4 8 sseldd KProsetABxAyAzAyB
10 simpr KProsetABxAyAzAzA
11 4 10 sseldd KProsetABxAyAzAzB
12 eqid K=K
13 1 12 isprs KProsetKVxByBzBxKxxKyyKzxKz
14 13 simprbi KProsetxByBzBxKxxKyyKzxKz
15 14 r19.21bi KProsetxByBzBxKxxKyyKzxKz
16 15 r19.21bi KProsetxByBzBxKxxKyyKzxKz
17 16 r19.21bi KProsetxByBzBxKxxKyyKzxKz
18 7 9 11 17 syl21anc KProsetABxAyAzAxKxxKyyKzxKz
19 18 ralrimiva KProsetABxAyAzAxKxxKyyKzxKz
20 19 ralrimiva KProsetABxAyAzAxKxxKyyKzxKz
21 20 ralrimiva KProsetABxAyAzAxKxxKyyKzxKz
22 eqid K𝑠A=K𝑠A
23 22 1 ressbas2 ABA=BaseK𝑠A
24 23 adantl KProsetABA=BaseK𝑠A
25 1 fvexi BV
26 25 ssex ABAV
27 22 12 ressle AVK=K𝑠A
28 26 27 syl ABK=K𝑠A
29 28 adantl KProsetABK=K𝑠A
30 29 breqd KProsetABxKxxK𝑠Ax
31 29 breqd KProsetABxKyxK𝑠Ay
32 29 breqd KProsetAByKzyK𝑠Az
33 31 32 anbi12d KProsetABxKyyKzxK𝑠AyyK𝑠Az
34 29 breqd KProsetABxKzxK𝑠Az
35 33 34 imbi12d KProsetABxKyyKzxKzxK𝑠AyyK𝑠AzxK𝑠Az
36 30 35 anbi12d KProsetABxKxxKyyKzxKzxK𝑠AxxK𝑠AyyK𝑠AzxK𝑠Az
37 24 36 raleqbidv KProsetABzAxKxxKyyKzxKzzBaseK𝑠AxK𝑠AxxK𝑠AyyK𝑠AzxK𝑠Az
38 24 37 raleqbidv KProsetAByAzAxKxxKyyKzxKzyBaseK𝑠AzBaseK𝑠AxK𝑠AxxK𝑠AyyK𝑠AzxK𝑠Az
39 24 38 raleqbidv KProsetABxAyAzAxKxxKyyKzxKzxBaseK𝑠AyBaseK𝑠AzBaseK𝑠AxK𝑠AxxK𝑠AyyK𝑠AzxK𝑠Az
40 39 anbi2d KProsetABK𝑠AVxAyAzAxKxxKyyKzxKzK𝑠AVxBaseK𝑠AyBaseK𝑠AzBaseK𝑠AxK𝑠AxxK𝑠AyyK𝑠AzxK𝑠Az
41 2 21 40 mpbi2and KProsetABK𝑠AVxBaseK𝑠AyBaseK𝑠AzBaseK𝑠AxK𝑠AxxK𝑠AyyK𝑠AzxK𝑠Az
42 eqid BaseK𝑠A=BaseK𝑠A
43 eqid K𝑠A=K𝑠A
44 42 43 isprs K𝑠AProsetK𝑠AVxBaseK𝑠AyBaseK𝑠AzBaseK𝑠AxK𝑠AxxK𝑠AyyK𝑠AzxK𝑠Az
45 41 44 sylibr KProsetABK𝑠AProset