Metamath Proof Explorer


Theorem resstos

Description: The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion resstos FTosetAVF𝑠AToset

Proof

Step Hyp Ref Expression
1 tospos FTosetFPoset
2 resspos FPosetAVF𝑠APoset
3 1 2 sylan FTosetAVF𝑠APoset
4 eqid F𝑠A=F𝑠A
5 eqid BaseF=BaseF
6 4 5 ressbas AVABaseF=BaseF𝑠A
7 inss2 ABaseFBaseF
8 6 7 eqsstrrdi AVBaseF𝑠ABaseF
9 8 adantl FTosetAVBaseF𝑠ABaseF
10 eqid F=F
11 5 10 istos FTosetFPosetxBaseFyBaseFxFyyFx
12 11 simprbi FTosetxBaseFyBaseFxFyyFx
13 12 adantr FTosetAVxBaseFyBaseFxFyyFx
14 ssralv BaseF𝑠ABaseFxBaseFyBaseFxFyyFxxBaseF𝑠AyBaseFxFyyFx
15 ssralv BaseF𝑠ABaseFyBaseFxFyyFxyBaseF𝑠AxFyyFx
16 15 ralimdv BaseF𝑠ABaseFxBaseF𝑠AyBaseFxFyyFxxBaseF𝑠AyBaseF𝑠AxFyyFx
17 14 16 syld BaseF𝑠ABaseFxBaseFyBaseFxFyyFxxBaseF𝑠AyBaseF𝑠AxFyyFx
18 9 13 17 sylc FTosetAVxBaseF𝑠AyBaseF𝑠AxFyyFx
19 4 10 ressle AVF=F𝑠A
20 19 breqd AVxFyxF𝑠Ay
21 19 breqd AVyFxyF𝑠Ax
22 20 21 orbi12d AVxFyyFxxF𝑠AyyF𝑠Ax
23 22 2ralbidv AVxBaseF𝑠AyBaseF𝑠AxFyyFxxBaseF𝑠AyBaseF𝑠AxF𝑠AyyF𝑠Ax
24 23 adantl FTosetAVxBaseF𝑠AyBaseF𝑠AxFyyFxxBaseF𝑠AyBaseF𝑠AxF𝑠AyyF𝑠Ax
25 18 24 mpbid FTosetAVxBaseF𝑠AyBaseF𝑠AxF𝑠AyyF𝑠Ax
26 eqid BaseF𝑠A=BaseF𝑠A
27 eqid F𝑠A=F𝑠A
28 26 27 istos F𝑠ATosetF𝑠APosetxBaseF𝑠AyBaseF𝑠AxF𝑠AyyF𝑠Ax
29 3 25 28 sylanbrc FTosetAVF𝑠AToset