Metamath Proof Explorer


Theorem resthauslem

Description: Lemma for resthaus and similar theorems. If the topological property A is preserved under injective preimages, then property A passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses resthauslem.1 JAJTop
resthauslem.2 JAISJ:SJ1-1SJISJJ𝑡SCnJJ𝑡SA
Assertion resthauslem JASVJ𝑡SA

Proof

Step Hyp Ref Expression
1 resthauslem.1 JAJTop
2 resthauslem.2 JAISJ:SJ1-1SJISJJ𝑡SCnJJ𝑡SA
3 simpl JASVJA
4 f1oi ISJ:SJ1-1 ontoSJ
5 f1of1 ISJ:SJ1-1 ontoSJISJ:SJ1-1SJ
6 4 5 mp1i JASVISJ:SJ1-1SJ
7 inss2 SJJ
8 resabs1 SJJIJSJ=ISJ
9 7 8 ax-mp IJSJ=ISJ
10 1 adantr JASVJTop
11 toptopon2 JTopJTopOnJ
12 10 11 sylib JASVJTopOnJ
13 idcn JTopOnJIJJCnJ
14 12 13 syl JASVIJJCnJ
15 eqid J=J
16 15 cnrest IJJCnJSJJIJSJJ𝑡SJCnJ
17 14 7 16 sylancl JASVIJSJJ𝑡SJCnJ
18 9 17 eqeltrrid JASVISJJ𝑡SJCnJ
19 15 restin JASVJ𝑡S=J𝑡SJ
20 19 oveq1d JASVJ𝑡SCnJ=J𝑡SJCnJ
21 18 20 eleqtrrd JASVISJJ𝑡SCnJ
22 3 6 21 2 syl3anc JASVJ𝑡SA