Description: Lemma for resthaus and similar theorems. If the topological property A is preserved under injective preimages, then property A passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resthauslem.1 | |
|
resthauslem.2 | |
||
Assertion | resthauslem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resthauslem.1 | |
|
2 | resthauslem.2 | |
|
3 | simpl | |
|
4 | f1oi | |
|
5 | f1of1 | |
|
6 | 4 5 | mp1i | |
7 | inss2 | |
|
8 | resabs1 | |
|
9 | 7 8 | ax-mp | |
10 | 1 | adantr | |
11 | toptopon2 | |
|
12 | 10 11 | sylib | |
13 | idcn | |
|
14 | 12 13 | syl | |
15 | eqid | |
|
16 | 15 | cnrest | |
17 | 14 7 16 | sylancl | |
18 | 9 17 | eqeltrrid | |
19 | 15 | restin | |
20 | 19 | oveq1d | |
21 | 18 20 | eleqtrrd | |
22 | 3 6 21 2 | syl3anc | |