Metamath Proof Explorer


Theorem lpcls

Description: The limit points of the closure of a subset are the same as the limit points of the set in a T_1 space. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis lpcls.1 X = J
Assertion lpcls J Fre S X limPt J cls J S = limPt J S

Proof

Step Hyp Ref Expression
1 lpcls.1 X = J
2 t1top J Fre J Top
3 1 clsss3 J Top S X cls J S X
4 3 ssdifssd J Top S X cls J S x X
5 1 clsss3 J Top cls J S x X cls J cls J S x X
6 4 5 syldan J Top S X cls J cls J S x X
7 2 6 sylan J Fre S X cls J cls J S x X
8 7 sseld J Fre S X x cls J cls J S x x X
9 ssdifss S X S x X
10 1 clscld J Top S x X cls J S x Clsd J
11 2 9 10 syl2an J Fre S X cls J S x Clsd J
12 11 adantr J Fre S X x X cls J S x Clsd J
13 1 t1sncld J Fre x X x Clsd J
14 13 adantlr J Fre S X x X x Clsd J
15 uncld x Clsd J cls J S x Clsd J x cls J S x Clsd J
16 14 12 15 syl2anc J Fre S X x X x cls J S x Clsd J
17 1 sscls J Top S x X S x cls J S x
18 2 9 17 syl2an J Fre S X S x cls J S x
19 ssundif S x cls J S x S x cls J S x
20 18 19 sylibr J Fre S X S x cls J S x
21 20 adantr J Fre S X x X S x cls J S x
22 1 clsss2 x cls J S x Clsd J S x cls J S x cls J S x cls J S x
23 16 21 22 syl2anc J Fre S X x X cls J S x cls J S x
24 ssundif cls J S x cls J S x cls J S x cls J S x
25 23 24 sylib J Fre S X x X cls J S x cls J S x
26 1 clsss2 cls J S x Clsd J cls J S x cls J S x cls J cls J S x cls J S x
27 12 25 26 syl2anc J Fre S X x X cls J cls J S x cls J S x
28 27 sseld J Fre S X x X x cls J cls J S x x cls J S x
29 28 ex J Fre S X x X x cls J cls J S x x cls J S x
30 29 com23 J Fre S X x cls J cls J S x x X x cls J S x
31 8 30 mpdd J Fre S X x cls J cls J S x x cls J S x
32 2 adantr J Fre S X J Top
33 2 3 sylan J Fre S X cls J S X
34 33 ssdifssd J Fre S X cls J S x X
35 1 sscls J Top S X S cls J S
36 2 35 sylan J Fre S X S cls J S
37 36 ssdifd J Fre S X S x cls J S x
38 1 clsss J Top cls J S x X S x cls J S x cls J S x cls J cls J S x
39 32 34 37 38 syl3anc J Fre S X cls J S x cls J cls J S x
40 39 sseld J Fre S X x cls J S x x cls J cls J S x
41 31 40 impbid J Fre S X x cls J cls J S x x cls J S x
42 1 islp J Top cls J S X x limPt J cls J S x cls J cls J S x
43 3 42 syldan J Top S X x limPt J cls J S x cls J cls J S x
44 2 43 sylan J Fre S X x limPt J cls J S x cls J cls J S x
45 1 islp J Top S X x limPt J S x cls J S x
46 2 45 sylan J Fre S X x limPt J S x cls J S x
47 41 44 46 3bitr4d J Fre S X x limPt J cls J S x limPt J S
48 47 eqrdv J Fre S X limPt J cls J S = limPt J S