Metamath Proof Explorer


Theorem restid2

Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion restid2 AVJ𝒫AJ𝑡A=J

Proof

Step Hyp Ref Expression
1 pwexg AV𝒫AV
2 1 adantr AVJ𝒫A𝒫AV
3 simpr AVJ𝒫AJ𝒫A
4 2 3 ssexd AVJ𝒫AJV
5 simpl AVJ𝒫AAV
6 restval JVAVJ𝑡A=ranxJxA
7 4 5 6 syl2anc AVJ𝒫AJ𝑡A=ranxJxA
8 3 sselda AVJ𝒫AxJx𝒫A
9 8 elpwid AVJ𝒫AxJxA
10 df-ss xAxA=x
11 9 10 sylib AVJ𝒫AxJxA=x
12 11 mpteq2dva AVJ𝒫AxJxA=xJx
13 mptresid IJ=xJx
14 12 13 eqtr4di AVJ𝒫AxJxA=IJ
15 14 rneqd AVJ𝒫AranxJxA=ranIJ
16 rnresi ranIJ=J
17 15 16 eqtrdi AVJ𝒫AranxJxA=J
18 7 17 eqtrd AVJ𝒫AJ𝑡A=J