Metamath Proof Explorer


Theorem resvlem

Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses resvlem.r R=W𝑣A
resvlem.e C=EW
resvlem.f E=SlotEndx
resvlem.n EndxScalarndx
Assertion resvlem AVC=ER

Proof

Step Hyp Ref Expression
1 resvlem.r R=W𝑣A
2 resvlem.e C=EW
3 resvlem.f E=SlotEndx
4 resvlem.n EndxScalarndx
5 eqid ScalarW=ScalarW
6 eqid BaseScalarW=BaseScalarW
7 1 5 6 resvid2 BaseScalarWAWVAVR=W
8 7 fveq2d BaseScalarWAWVAVER=EW
9 8 3expib BaseScalarWAWVAVER=EW
10 1 5 6 resvval2 ¬BaseScalarWAWVAVR=WsSetScalarndxScalarW𝑠A
11 10 fveq2d ¬BaseScalarWAWVAVER=EWsSetScalarndxScalarW𝑠A
12 3 4 setsnid EW=EWsSetScalarndxScalarW𝑠A
13 11 12 eqtr4di ¬BaseScalarWAWVAVER=EW
14 13 3expib ¬BaseScalarWAWVAVER=EW
15 9 14 pm2.61i WVAVER=EW
16 3 str0 =E
17 16 eqcomi E=
18 reldmresv Reldom𝑣
19 17 1 18 oveqprc ¬WVEW=ER
20 19 eqcomd ¬WVER=EW
21 20 adantr ¬WVAVER=EW
22 15 21 pm2.61ian AVER=EW
23 2 22 eqtr4id AVC=ER