Metamath Proof Explorer


Theorem resvlemOLD

Description: Obsolete version of resvlem as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses resvlemOLD.r R=W𝑣A
resvlemOLD.e C=EW
resvlemOLD.f E=SlotN
resvlemOLD.n N
resvlemOLD.b N5
Assertion resvlemOLD AVC=ER

Proof

Step Hyp Ref Expression
1 resvlemOLD.r R=W𝑣A
2 resvlemOLD.e C=EW
3 resvlemOLD.f E=SlotN
4 resvlemOLD.n N
5 resvlemOLD.b N5
6 eqid ScalarW=ScalarW
7 eqid BaseScalarW=BaseScalarW
8 1 6 7 resvid2 BaseScalarWAWVAVR=W
9 8 fveq2d BaseScalarWAWVAVER=EW
10 9 3expib BaseScalarWAWVAVER=EW
11 1 6 7 resvval2 ¬BaseScalarWAWVAVR=WsSetScalarndxScalarW𝑠A
12 11 fveq2d ¬BaseScalarWAWVAVER=EWsSetScalarndxScalarW𝑠A
13 3 4 ndxid E=SlotEndx
14 3 4 ndxarg Endx=N
15 14 5 eqnetri Endx5
16 scandx Scalarndx=5
17 15 16 neeqtrri EndxScalarndx
18 13 17 setsnid EW=EWsSetScalarndxScalarW𝑠A
19 12 18 eqtr4di ¬BaseScalarWAWVAVER=EW
20 19 3expib ¬BaseScalarWAWVAVER=EW
21 10 20 pm2.61i WVAVER=EW
22 reldmresv Reldom𝑣
23 22 ovprc1 ¬WVW𝑣A=
24 1 23 eqtrid ¬WVR=
25 24 fveq2d ¬WVER=E
26 3 str0 =E
27 25 26 eqtr4di ¬WVER=
28 fvprc ¬WVEW=
29 27 28 eqtr4d ¬WVER=EW
30 29 adantr ¬WVAVER=EW
31 21 30 pm2.61ian AVER=EW
32 2 31 eqtr4id AVC=ER