Metamath Proof Explorer


Theorem reuprg0

Description: Convert a restricted existential uniqueness over a pair to a disjunction of conjunctions. (Contributed by AV, 2-Apr-2023)

Ref Expression
Hypotheses reuprg.1 x = A φ ψ
reuprg.2 x = B φ χ
Assertion reuprg0 A V B W ∃! x A B φ ψ χ A = B χ ψ A = B

Proof

Step Hyp Ref Expression
1 reuprg.1 x = A φ ψ
2 reuprg.2 x = B φ χ
3 nfsbc1v x [˙c / x]˙ φ
4 nfsbc1v x [˙w / x]˙ φ
5 sbceq1a x = w φ [˙w / x]˙ φ
6 dfsbcq w = c [˙w / x]˙ φ [˙c / x]˙ φ
7 3 4 5 6 reu8nf ∃! x A B φ x A B φ c A B [˙c / x]˙ φ x = c
8 nfv x ψ
9 nfcv _ x A B
10 nfv x A = c
11 3 10 nfim x [˙c / x]˙ φ A = c
12 9 11 nfralw x c A B [˙c / x]˙ φ A = c
13 8 12 nfan x ψ c A B [˙c / x]˙ φ A = c
14 nfv x χ
15 nfv x B = c
16 3 15 nfim x [˙c / x]˙ φ B = c
17 9 16 nfralw x c A B [˙c / x]˙ φ B = c
18 14 17 nfan x χ c A B [˙c / x]˙ φ B = c
19 eqeq1 x = A x = c A = c
20 19 imbi2d x = A [˙c / x]˙ φ x = c [˙c / x]˙ φ A = c
21 20 ralbidv x = A c A B [˙c / x]˙ φ x = c c A B [˙c / x]˙ φ A = c
22 1 21 anbi12d x = A φ c A B [˙c / x]˙ φ x = c ψ c A B [˙c / x]˙ φ A = c
23 eqeq1 x = B x = c B = c
24 23 imbi2d x = B [˙c / x]˙ φ x = c [˙c / x]˙ φ B = c
25 24 ralbidv x = B c A B [˙c / x]˙ φ x = c c A B [˙c / x]˙ φ B = c
26 2 25 anbi12d x = B φ c A B [˙c / x]˙ φ x = c χ c A B [˙c / x]˙ φ B = c
27 13 18 22 26 rexprgf A V B W x A B φ c A B [˙c / x]˙ φ x = c ψ c A B [˙c / x]˙ φ A = c χ c A B [˙c / x]˙ φ B = c
28 dfsbcq c = A [˙c / x]˙ φ [˙A / x]˙ φ
29 eqeq2 c = A A = c A = A
30 28 29 imbi12d c = A [˙c / x]˙ φ A = c [˙A / x]˙ φ A = A
31 dfsbcq c = B [˙c / x]˙ φ [˙B / x]˙ φ
32 eqeq2 c = B A = c A = B
33 31 32 imbi12d c = B [˙c / x]˙ φ A = c [˙B / x]˙ φ A = B
34 30 33 ralprg A V B W c A B [˙c / x]˙ φ A = c [˙A / x]˙ φ A = A [˙B / x]˙ φ A = B
35 eqidd [˙A / x]˙ φ A = A
36 35 biantrur [˙B / x]˙ φ A = B [˙A / x]˙ φ A = A [˙B / x]˙ φ A = B
37 2 sbcieg B W [˙B / x]˙ φ χ
38 37 adantl A V B W [˙B / x]˙ φ χ
39 38 imbi1d A V B W [˙B / x]˙ φ A = B χ A = B
40 36 39 bitr3id A V B W [˙A / x]˙ φ A = A [˙B / x]˙ φ A = B χ A = B
41 34 40 bitrd A V B W c A B [˙c / x]˙ φ A = c χ A = B
42 41 anbi2d A V B W ψ c A B [˙c / x]˙ φ A = c ψ χ A = B
43 eqeq2 c = A B = c B = A
44 28 43 imbi12d c = A [˙c / x]˙ φ B = c [˙A / x]˙ φ B = A
45 eqeq2 c = B B = c B = B
46 31 45 imbi12d c = B [˙c / x]˙ φ B = c [˙B / x]˙ φ B = B
47 44 46 ralprg A V B W c A B [˙c / x]˙ φ B = c [˙A / x]˙ φ B = A [˙B / x]˙ φ B = B
48 eqidd [˙B / x]˙ φ B = B
49 48 biantru [˙A / x]˙ φ B = A [˙A / x]˙ φ B = A [˙B / x]˙ φ B = B
50 1 sbcieg A V [˙A / x]˙ φ ψ
51 50 adantr A V B W [˙A / x]˙ φ ψ
52 51 imbi1d A V B W [˙A / x]˙ φ B = A ψ B = A
53 49 52 bitr3id A V B W [˙A / x]˙ φ B = A [˙B / x]˙ φ B = B ψ B = A
54 47 53 bitrd A V B W c A B [˙c / x]˙ φ B = c ψ B = A
55 54 anbi2d A V B W χ c A B [˙c / x]˙ φ B = c χ ψ B = A
56 eqcom B = A A = B
57 56 imbi2i ψ B = A ψ A = B
58 57 anbi2i χ ψ B = A χ ψ A = B
59 55 58 bitrdi A V B W χ c A B [˙c / x]˙ φ B = c χ ψ A = B
60 42 59 orbi12d A V B W ψ c A B [˙c / x]˙ φ A = c χ c A B [˙c / x]˙ φ B = c ψ χ A = B χ ψ A = B
61 27 60 bitrd A V B W x A B φ c A B [˙c / x]˙ φ x = c ψ χ A = B χ ψ A = B
62 7 61 bitrid A V B W ∃! x A B φ ψ χ A = B χ ψ A = B