Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | reusq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1 | |
|
2 | sqrtcl | |
|
3 | 2 | adantr | |
4 | 2 | negcld | |
5 | 4 | adantr | |
6 | 2 | eqnegd | |
7 | simpl | |
|
8 | simpr | |
|
9 | 7 8 | sqr00d | |
10 | 9 | ex | |
11 | 6 10 | sylbid | |
12 | 11 | necon3bd | |
13 | 12 | imp | |
14 | 3 5 13 | 3jca | |
15 | sqrtth | |
|
16 | sqneg | |
|
17 | 2 16 | syl | |
18 | 17 15 | eqtrd | |
19 | 15 18 | jca | |
20 | 19 | adantr | |
21 | oveq1 | |
|
22 | 21 | eqeq1d | |
23 | oveq1 | |
|
24 | 23 | eqeq1d | |
25 | 22 24 | 2nreu | |
26 | 14 20 25 | sylc | |
27 | 26 | pm2.21d | |
28 | 27 | expcom | |
29 | 1 28 | pm2.61i | |
30 | 2nn | |
|
31 | 0cnd | |
|
32 | oveq1 | |
|
33 | 32 | eqeq1d | |
34 | eqeq1 | |
|
35 | 34 | imbi2d | |
36 | 35 | ralbidv | |
37 | 33 36 | anbi12d | |
38 | 37 | adantl | |
39 | 0exp | |
|
40 | sqeq0 | |
|
41 | 40 | biimpd | |
42 | eqcom | |
|
43 | 41 42 | syl6ibr | |
44 | 43 | adantl | |
45 | 44 | ralrimiva | |
46 | 39 45 | jca | |
47 | 31 38 46 | rspcedvd | |
48 | 30 47 | mp1i | |
49 | eqeq2 | |
|
50 | eqeq2 | |
|
51 | 50 | imbi1d | |
52 | 51 | ralbidv | |
53 | 49 52 | anbi12d | |
54 | 53 | rexbidv | |
55 | 48 54 | mpbird | |
56 | 55 | a1i | |
57 | oveq1 | |
|
58 | 57 | eqeq1d | |
59 | 58 | reu8 | |
60 | 56 59 | syl6ibr | |
61 | 29 60 | impbid | |