Metamath Proof Explorer


Theorem reusq0

Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023)

Ref Expression
Assertion reusq0 X∃!xx2=XX=0

Proof

Step Hyp Ref Expression
1 2a1 X=0X∃!xx2=XX=0
2 sqrtcl XX
3 2 adantr X¬X=0X
4 2 negcld XX
5 4 adantr X¬X=0X
6 2 eqnegd XX=XX=0
7 simpl XX=0X
8 simpr XX=0X=0
9 7 8 sqr00d XX=0X=0
10 9 ex XX=0X=0
11 6 10 sylbid XX=XX=0
12 11 necon3bd X¬X=0XX
13 12 imp X¬X=0XX
14 3 5 13 3jca X¬X=0XXXX
15 sqrtth XX2=X
16 sqneg XX2=X2
17 2 16 syl XX2=X2
18 17 15 eqtrd XX2=X
19 15 18 jca XX2=XX2=X
20 19 adantr X¬X=0X2=XX2=X
21 oveq1 x=Xx2=X2
22 21 eqeq1d x=Xx2=XX2=X
23 oveq1 x=Xx2=X2
24 23 eqeq1d x=Xx2=XX2=X
25 22 24 2nreu XXXXX2=XX2=X¬∃!xx2=X
26 14 20 25 sylc X¬X=0¬∃!xx2=X
27 26 pm2.21d X¬X=0∃!xx2=XX=0
28 27 expcom ¬X=0X∃!xx2=XX=0
29 1 28 pm2.61i X∃!xx2=XX=0
30 2nn 2
31 0cnd 20
32 oveq1 x=0x2=02
33 32 eqeq1d x=0x2=002=0
34 eqeq1 x=0x=y0=y
35 34 imbi2d x=0y2=0x=yy2=00=y
36 35 ralbidv x=0yy2=0x=yyy2=00=y
37 33 36 anbi12d x=0x2=0yy2=0x=y02=0yy2=00=y
38 37 adantl 2x=0x2=0yy2=0x=y02=0yy2=00=y
39 0exp 202=0
40 sqeq0 yy2=0y=0
41 40 biimpd yy2=0y=0
42 eqcom 0=yy=0
43 41 42 syl6ibr yy2=00=y
44 43 adantl 2yy2=00=y
45 44 ralrimiva 2yy2=00=y
46 39 45 jca 202=0yy2=00=y
47 31 38 46 rspcedvd 2xx2=0yy2=0x=y
48 30 47 mp1i X=0xx2=0yy2=0x=y
49 eqeq2 X=0x2=Xx2=0
50 eqeq2 X=0y2=Xy2=0
51 50 imbi1d X=0y2=Xx=yy2=0x=y
52 51 ralbidv X=0yy2=Xx=yyy2=0x=y
53 49 52 anbi12d X=0x2=Xyy2=Xx=yx2=0yy2=0x=y
54 53 rexbidv X=0xx2=Xyy2=Xx=yxx2=0yy2=0x=y
55 48 54 mpbird X=0xx2=Xyy2=Xx=y
56 55 a1i XX=0xx2=Xyy2=Xx=y
57 oveq1 x=yx2=y2
58 57 eqeq1d x=yx2=Xy2=X
59 58 reu8 ∃!xx2=Xxx2=Xyy2=Xx=y
60 56 59 syl6ibr XX=0∃!xx2=X
61 29 60 impbid X∃!xx2=XX=0