Description: Two ways to express single-valuedness of a class expression C ( y ) that is constant for those y e. B such that ph . The first antecedent ensures that the constant value belongs to the existential uniqueness domain A , and the second ensures that C ( y ) is evaluated for at least one y . (Contributed by NM, 4-Jan-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | reusv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 | |
|
2 | nfcv | |
|
3 | nfv | |
|
4 | nfcsb1v | |
|
5 | 4 | nfel1 | |
6 | csbeq1a | |
|
7 | 6 | eleq1d | |
8 | 1 2 3 5 7 | cbvralfw | |
9 | rabid | |
|
10 | 9 | imbi1i | |
11 | impexp | |
|
12 | 10 11 | bitri | |
13 | 12 | ralbii2 | |
14 | 8 13 | bitr3i | |
15 | rabn0 | |
|
16 | reusv2lem5 | |
|
17 | nfv | |
|
18 | 4 | nfeq2 | |
19 | 6 | eqeq2d | |
20 | 1 2 17 18 19 | cbvrexfw | |
21 | 9 | anbi1i | |
22 | anass | |
|
23 | 21 22 | bitri | |
24 | 23 | rexbii2 | |
25 | 20 24 | bitr3i | |
26 | 25 | reubii | |
27 | 1 2 17 18 19 | cbvralfw | |
28 | 9 | imbi1i | |
29 | impexp | |
|
30 | 28 29 | bitri | |
31 | 30 | ralbii2 | |
32 | 27 31 | bitr3i | |
33 | 32 | reubii | |
34 | 16 26 33 | 3bitr3g | |
35 | 14 15 34 | syl2anbr | |