Step |
Hyp |
Ref |
Expression |
1 |
|
reuxfrdf.0 |
|
2 |
|
reuxfrdf.1 |
|
3 |
|
reuxfrdf.2 |
|
4 |
|
rmoan |
|
5 |
3 4
|
syl |
|
6 |
|
ancom |
|
7 |
6
|
rmobii |
|
8 |
5 7
|
sylib |
|
9 |
8
|
ralrimiva |
|
10 |
|
df-rmo |
|
11 |
10
|
ralbii |
|
12 |
|
df-ral |
|
13 |
1
|
nfcri |
|
14 |
13
|
moanim |
|
15 |
14
|
albii |
|
16 |
12 15
|
bitr4i |
|
17 |
|
2euswapv |
|
18 |
|
df-reu |
|
19 |
13
|
r19.41 |
|
20 |
|
ancom |
|
21 |
20
|
rexbii |
|
22 |
|
ancom |
|
23 |
19 21 22
|
3bitr4i |
|
24 |
|
df-rex |
|
25 |
23 24
|
bitr3i |
|
26 |
|
an12 |
|
27 |
26
|
exbii |
|
28 |
25 27
|
bitri |
|
29 |
28
|
eubii |
|
30 |
18 29
|
bitri |
|
31 |
|
df-reu |
|
32 |
|
nfv |
|
33 |
32
|
r19.41 |
|
34 |
|
ancom |
|
35 |
34
|
rexbii |
|
36 |
|
ancom |
|
37 |
33 35 36
|
3bitr4i |
|
38 |
|
df-rex |
|
39 |
37 38
|
bitr3i |
|
40 |
39
|
eubii |
|
41 |
31 40
|
bitri |
|
42 |
17 30 41
|
3imtr4g |
|
43 |
16 42
|
sylbi |
|
44 |
11 43
|
sylbi |
|
45 |
9 44
|
syl |
|
46 |
|
df-ral |
|
47 |
|
moanimv |
|
48 |
47
|
albii |
|
49 |
46 48
|
bitr4i |
|
50 |
|
2euswapv |
|
51 |
|
r19.42v |
|
52 |
51 38
|
bitr3i |
|
53 |
|
an12 |
|
54 |
53
|
exbii |
|
55 |
52 54
|
bitri |
|
56 |
55
|
eubii |
|
57 |
31 56
|
bitri |
|
58 |
25
|
eubii |
|
59 |
18 58
|
bitri |
|
60 |
50 57 59
|
3imtr4g |
|
61 |
49 60
|
sylbi |
|
62 |
|
moeq |
|
63 |
62
|
moani |
|
64 |
|
ancom |
|
65 |
|
an12 |
|
66 |
64 65
|
bitri |
|
67 |
66
|
mobii |
|
68 |
63 67
|
mpbi |
|
69 |
68
|
a1i |
|
70 |
61 69
|
mprg |
|
71 |
45 70
|
impbid1 |
|
72 |
|
biidd |
|
73 |
72
|
ceqsrexv |
|
74 |
2 73
|
syl |
|
75 |
74
|
reubidva |
|
76 |
71 75
|
bitrd |
|