| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuxfrdf.0 | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 2 |  | reuxfrdf.1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  𝐴  ∈  𝐵 ) | 
						
							| 3 |  | reuxfrdf.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃* 𝑦  ∈  𝐶 𝑥  =  𝐴 ) | 
						
							| 4 |  | rmoan | ⊢ ( ∃* 𝑦  ∈  𝐶 𝑥  =  𝐴  →  ∃* 𝑦  ∈  𝐶 ( 𝜓  ∧  𝑥  =  𝐴 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃* 𝑦  ∈  𝐶 ( 𝜓  ∧  𝑥  =  𝐴 ) ) | 
						
							| 6 |  | ancom | ⊢ ( ( 𝜓  ∧  𝑥  =  𝐴 )  ↔  ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 7 | 6 | rmobii | ⊢ ( ∃* 𝑦  ∈  𝐶 ( 𝜓  ∧  𝑥  =  𝐴 )  ↔  ∃* 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 8 | 5 7 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃* 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 9 | 8 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∃* 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 10 |  | df-rmo | ⊢ ( ∃* 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 11 | 10 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐵 ∃* 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∀ 𝑥  ∈  𝐵 ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 12 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐵 ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 13 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑥  ∈  𝐵 | 
						
							| 14 | 13 | moanim | ⊢ ( ∃* 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ( 𝑥  ∈  𝐵  →  ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 15 | 14 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 16 | 12 15 | bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐵 ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 17 |  | 2euswapv | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  →  ( ∃! 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  →  ∃! 𝑦 ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) ) | 
						
							| 18 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑥 ( 𝑥  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 19 | 13 | r19.41 | ⊢ ( ∃ 𝑦  ∈  𝐶 ( ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑥  ∈  𝐵 )  ↔  ( ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 20 |  | ancom | ⊢ ( ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ( ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 21 | 20 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐶 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑦  ∈  𝐶 ( ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 22 |  | ancom | ⊢ ( ( 𝑥  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ( ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 23 | 19 21 22 | 3bitr4i | ⊢ ( ∃ 𝑦  ∈  𝐶 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ( 𝑥  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 24 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐶 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 25 | 23 24 | bitr3i | ⊢ ( ( 𝑥  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 26 |  | an12 | ⊢ ( ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 27 | 26 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ∃ 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 28 | 25 27 | bitri | ⊢ ( ( 𝑥  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 29 | 28 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃! 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 30 | 18 29 | bitri | ⊢ ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 31 |  | df-reu | ⊢ ( ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑦 ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝐶 | 
						
							| 33 | 32 | r19.41 | ⊢ ( ∃ 𝑥  ∈  𝐵 ( ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑦  ∈  𝐶 )  ↔  ( ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 34 |  | ancom | ⊢ ( ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ( ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 35 | 34 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐵 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑥  ∈  𝐵 ( ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 36 |  | ancom | ⊢ ( ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ( ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 37 | 33 35 36 | 3bitr4i | ⊢ ( ∃ 𝑥  ∈  𝐵 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 38 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐵 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 39 | 37 38 | bitr3i | ⊢ ( ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 40 | 39 | eubii | ⊢ ( ∃! 𝑦 ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃! 𝑦 ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 41 | 31 40 | bitri | ⊢ ( ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑦 ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 42 | 17 30 41 | 3imtr4g | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  →  ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 43 | 16 42 | sylbi | ⊢ ( ∀ 𝑥  ∈  𝐵 ∃* 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  →  ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 44 | 11 43 | sylbi | ⊢ ( ∀ 𝑥  ∈  𝐵 ∃* 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 45 | 9 44 | syl | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 46 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐶 ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐶  →  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 47 |  | moanimv | ⊢ ( ∃* 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ( 𝑦  ∈  𝐶  →  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 48 | 47 | albii | ⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐶  →  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 49 | 46 48 | bitr4i | ⊢ ( ∀ 𝑦  ∈  𝐶 ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∀ 𝑦 ∃* 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 50 |  | 2euswapv | ⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  →  ( ∃! 𝑦 ∃ 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  →  ∃! 𝑥 ∃ 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) ) | 
						
							| 51 |  | r19.42v | ⊢ ( ∃ 𝑥  ∈  𝐵 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 52 | 51 38 | bitr3i | ⊢ ( ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 53 |  | an12 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 54 | 53 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑦  ∈  𝐶  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 55 | 52 54 | bitri | ⊢ ( ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 56 | 55 | eubii | ⊢ ( ∃! 𝑦 ( 𝑦  ∈  𝐶  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃! 𝑦 ∃ 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 57 | 31 56 | bitri | ⊢ ( ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑦 ∃ 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 58 | 25 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) )  ↔  ∃! 𝑥 ∃ 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 59 | 18 58 | bitri | ⊢ ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑥 ∃ 𝑦 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 60 | 50 57 59 | 3imtr4g | ⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦  ∈  𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) )  →  ( ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 61 | 49 60 | sylbi | ⊢ ( ∀ 𝑦  ∈  𝐶 ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) )  →  ( ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 62 |  | moeq | ⊢ ∃* 𝑥 𝑥  =  𝐴 | 
						
							| 63 | 62 | moani | ⊢ ∃* 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝜓 )  ∧  𝑥  =  𝐴 ) | 
						
							| 64 |  | ancom | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝜓 )  ∧  𝑥  =  𝐴 )  ↔  ( 𝑥  =  𝐴  ∧  ( 𝑥  ∈  𝐵  ∧  𝜓 ) ) ) | 
						
							| 65 |  | an12 | ⊢ ( ( 𝑥  =  𝐴  ∧  ( 𝑥  ∈  𝐵  ∧  𝜓 ) )  ↔  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 66 | 64 65 | bitri | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝜓 )  ∧  𝑥  =  𝐴 )  ↔  ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 67 | 66 | mobii | ⊢ ( ∃* 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝜓 )  ∧  𝑥  =  𝐴 )  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 68 | 63 67 | mpbi | ⊢ ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 69 | 68 | a1i | ⊢ ( 𝑦  ∈  𝐶  →  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 70 | 61 69 | mprg | ⊢ ( ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  →  ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 71 | 45 70 | impbid1 | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 ) ) ) | 
						
							| 72 |  | biidd | ⊢ ( 𝑥  =  𝐴  →  ( 𝜓  ↔  𝜓 ) ) | 
						
							| 73 | 72 | ceqsrexv | ⊢ ( 𝐴  ∈  𝐵  →  ( ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  𝜓 ) ) | 
						
							| 74 | 2 73 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  ( ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  𝜓 ) ) | 
						
							| 75 | 74 | reubidva | ⊢ ( 𝜑  →  ( ∃! 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑦  ∈  𝐶 𝜓 ) ) | 
						
							| 76 | 71 75 | bitrd | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑦  ∈  𝐶 𝜓 ) ) |