| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuxfrdf.0 |
⊢ Ⅎ 𝑦 𝐵 |
| 2 |
|
reuxfrdf.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
| 3 |
|
reuxfrdf.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 4 |
|
rmoan |
⊢ ( ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
| 6 |
|
ancom |
⊢ ( ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 7 |
6
|
rmobii |
⊢ ( ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 8 |
5 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 9 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 10 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 11 |
10
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 12 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 13 |
1
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐵 |
| 14 |
13
|
moanim |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 15 |
14
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 16 |
12 15
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 17 |
|
2euswapv |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) ) |
| 18 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 19 |
13
|
r19.41 |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 20 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 21 |
20
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∈ 𝐶 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 22 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 23 |
19 21 22
|
3bitr4i |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 24 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 25 |
23 24
|
bitr3i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 26 |
|
an12 |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 27 |
26
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 28 |
25 27
|
bitri |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 29 |
28
|
eubii |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 30 |
18 29
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 31 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 32 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
| 33 |
32
|
r19.41 |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
| 34 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
| 35 |
34
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
| 36 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
| 37 |
33 35 36
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 38 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 39 |
37 38
|
bitr3i |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 40 |
39
|
eubii |
⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 41 |
31 40
|
bitri |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 42 |
17 30 41
|
3imtr4g |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 43 |
16 42
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 44 |
11 43
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 45 |
9 44
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 46 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 47 |
|
moanimv |
⊢ ( ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 48 |
47
|
albii |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 49 |
46 48
|
bitr4i |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 50 |
|
2euswapv |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑦 ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ∃! 𝑥 ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) ) |
| 51 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 52 |
51 38
|
bitr3i |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 53 |
|
an12 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 54 |
53
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 55 |
52 54
|
bitri |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 56 |
55
|
eubii |
⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 57 |
31 56
|
bitri |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 58 |
25
|
eubii |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 59 |
18 58
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
| 60 |
50 57 59
|
3imtr4g |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 61 |
49 60
|
sylbi |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 62 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 𝐴 |
| 63 |
62
|
moani |
⊢ ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) |
| 64 |
|
ancom |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 65 |
|
an12 |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 66 |
64 65
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 67 |
66
|
mobii |
⊢ ( ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 68 |
63 67
|
mpbi |
⊢ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 69 |
68
|
a1i |
⊢ ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 70 |
61 69
|
mprg |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 71 |
45 70
|
impbid1 |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 72 |
|
biidd |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜓 ) ) |
| 73 |
72
|
ceqsrexv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 74 |
2 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 75 |
74
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |
| 76 |
71 75
|
bitrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |