Step |
Hyp |
Ref |
Expression |
1 |
|
reuxfrdf.0 |
⊢ Ⅎ 𝑦 𝐵 |
2 |
|
reuxfrdf.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
3 |
|
reuxfrdf.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
4 |
|
rmoan |
⊢ ( ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
6 |
|
ancom |
⊢ ( ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
7 |
6
|
rmobii |
⊢ ( ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
8 |
5 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
9 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
10 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
12 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
13 |
1
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐵 |
14 |
13
|
moanim |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
16 |
12 15
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
17 |
|
2euswapv |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) ) |
18 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
19 |
13
|
r19.41 |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
20 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
21 |
20
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∈ 𝐶 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
22 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐵 ) ) |
23 |
19 21 22
|
3bitr4i |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
24 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
25 |
23 24
|
bitr3i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
26 |
|
an12 |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
27 |
26
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
28 |
25 27
|
bitri |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
29 |
28
|
eubii |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
30 |
18 29
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
31 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
33 |
32
|
r19.41 |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
34 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
35 |
34
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
36 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝐶 ) ) |
37 |
33 35 36
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
38 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
39 |
37 38
|
bitr3i |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
40 |
39
|
eubii |
⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
41 |
31 40
|
bitri |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
42 |
17 30 41
|
3imtr4g |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
43 |
16 42
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
44 |
11 43
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
45 |
9 44
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
46 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
47 |
|
moanimv |
⊢ ( ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
48 |
47
|
albii |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
49 |
46 48
|
bitr4i |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
50 |
|
2euswapv |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑦 ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ∃! 𝑥 ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) ) |
51 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
52 |
51 38
|
bitr3i |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
53 |
|
an12 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
54 |
53
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
55 |
52 54
|
bitri |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
56 |
55
|
eubii |
⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
57 |
31 56
|
bitri |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
58 |
25
|
eubii |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
59 |
18 58
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) ) |
60 |
50 57 59
|
3imtr4g |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
61 |
49 60
|
sylbi |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
62 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 𝐴 |
63 |
62
|
moani |
⊢ ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) |
64 |
|
ancom |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
65 |
|
an12 |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
66 |
64 65
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
67 |
66
|
mobii |
⊢ ( ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
68 |
63 67
|
mpbi |
⊢ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
69 |
68
|
a1i |
⊢ ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
70 |
61 69
|
mprg |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
71 |
45 70
|
impbid1 |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
72 |
|
biidd |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜓 ) ) |
73 |
72
|
ceqsrexv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
74 |
2 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
75 |
74
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |
76 |
71 75
|
bitrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |