Metamath Proof Explorer


Theorem rexanuz

Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013)

Ref Expression
Assertion rexanuz jkjφψjkjφjkjψ

Proof

Step Hyp Ref Expression
1 r19.26 kjφψkjφkjψ
2 1 rexbii jkjφψjkjφkjψ
3 r19.40 jkjφkjψjkjφjkjψ
4 2 3 sylbi jkjφψjkjφjkjψ
5 uzf :𝒫
6 ffn :𝒫Fn
7 raleq x=jkxφkjφ
8 7 rexrn Fnxrankxφjkjφ
9 5 6 8 mp2b xrankxφjkjφ
10 raleq y=jkyψkjψ
11 10 rexrn Fnyrankyψjkjψ
12 5 6 11 mp2b yrankyψjkjψ
13 uzin2 xranyranxyran
14 inss1 xyx
15 ssralv xyxkxφkxyφ
16 14 15 ax-mp kxφkxyφ
17 inss2 xyy
18 ssralv xyykyψkxyψ
19 17 18 ax-mp kyψkxyψ
20 16 19 anim12i kxφkyψkxyφkxyψ
21 r19.26 kxyφψkxyφkxyψ
22 20 21 sylibr kxφkyψkxyφψ
23 raleq z=xykzφψkxyφψ
24 23 rspcev xyrankxyφψzrankzφψ
25 13 22 24 syl2an xranyrankxφkyψzrankzφψ
26 25 an4s xrankxφyrankyψzrankzφψ
27 26 rexlimdvaa xrankxφyrankyψzrankzφψ
28 27 rexlimiva xrankxφyrankyψzrankzφψ
29 28 imp xrankxφyrankyψzrankzφψ
30 raleq z=jkzφψkjφψ
31 30 rexrn Fnzrankzφψjkjφψ
32 5 6 31 mp2b zrankzφψjkjφψ
33 29 32 sylib xrankxφyrankyψjkjφψ
34 9 12 33 syl2anbr jkjφjkjψjkjφψ
35 4 34 impbii jkjφψjkjφjkjψ