| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rfcnnnub.1 |
|
| 2 |
|
rfcnnnub.2 |
|
| 3 |
|
rfcnnnub.3 |
|
| 4 |
|
rfcnnnub.4 |
|
| 5 |
|
rfcnnnub.5 |
|
| 6 |
|
rfcnnnub.6 |
|
| 7 |
|
rfcnnnub.7 |
|
| 8 |
|
rfcnnnub.8 |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfcv |
|
| 11 |
|
nfcv |
|
| 12 |
|
nfv |
|
| 13 |
8 7
|
eleqtrdi |
|
| 14 |
9 1 10 11 12 2 5 3 4 13 6
|
evthf |
|
| 15 |
|
df-rex |
|
| 16 |
14 15
|
sylib |
|
| 17 |
3 5 7 8
|
fcnre |
|
| 18 |
17
|
ffvelcdmda |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
anim1d |
|
| 21 |
20
|
eximdv |
|
| 22 |
16 21
|
mpd |
|
| 23 |
17
|
ffvelcdmda |
|
| 24 |
23
|
ex |
|
| 25 |
2 24
|
ralrimi |
|
| 26 |
|
19.41v |
|
| 27 |
22 25 26
|
sylanbrc |
|
| 28 |
|
df-3an |
|
| 29 |
28
|
exbii |
|
| 30 |
27 29
|
sylibr |
|
| 31 |
|
nfcv |
|
| 32 |
1 31
|
nffv |
|
| 33 |
32
|
nfel1 |
|
| 34 |
|
nfra1 |
|
| 35 |
|
nfra1 |
|
| 36 |
33 34 35
|
nf3an |
|
| 37 |
|
nfv |
|
| 38 |
|
nfcv |
|
| 39 |
|
nfcv |
|
| 40 |
32 38 39
|
nfbr |
|
| 41 |
37 40
|
nfan |
|
| 42 |
36 41
|
nfan |
|
| 43 |
|
simpll3 |
|
| 44 |
|
simpr |
|
| 45 |
|
rsp |
|
| 46 |
43 44 45
|
sylc |
|
| 47 |
|
simpll1 |
|
| 48 |
|
simplrl |
|
| 49 |
48
|
nnred |
|
| 50 |
|
simpl2 |
|
| 51 |
50
|
r19.21bi |
|
| 52 |
|
simplrr |
|
| 53 |
46 47 49 51 52
|
lelttrd |
|
| 54 |
53
|
ex |
|
| 55 |
42 54
|
ralrimi |
|
| 56 |
|
arch |
|
| 57 |
56
|
3ad2ant1 |
|
| 58 |
55 57
|
reximddv |
|
| 59 |
58
|
eximi |
|
| 60 |
30 59
|
syl |
|
| 61 |
|
19.9v |
|
| 62 |
60 61
|
sylib |
|