Metamath Proof Explorer


Theorem rfcnnnub

Description: Given a real continuous function F defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnnnub.1 _ t F
rfcnnnub.2 t φ
rfcnnnub.3 K = topGen ran .
rfcnnnub.4 φ J Comp
rfcnnnub.5 T = J
rfcnnnub.6 φ T
rfcnnnub.7 C = J Cn K
rfcnnnub.8 φ F C
Assertion rfcnnnub φ n t T F t < n

Proof

Step Hyp Ref Expression
1 rfcnnnub.1 _ t F
2 rfcnnnub.2 t φ
3 rfcnnnub.3 K = topGen ran .
4 rfcnnnub.4 φ J Comp
5 rfcnnnub.5 T = J
6 rfcnnnub.6 φ T
7 rfcnnnub.7 C = J Cn K
8 rfcnnnub.8 φ F C
9 nfcv _ s F
10 nfcv _ s T
11 nfcv _ t T
12 nfv s φ
13 8 7 eleqtrdi φ F J Cn K
14 9 1 10 11 12 2 5 3 4 13 6 evthf φ s T t T F t F s
15 df-rex s T t T F t F s s s T t T F t F s
16 14 15 sylib φ s s T t T F t F s
17 3 5 7 8 fcnre φ F : T
18 17 ffvelrnda φ s T F s
19 18 ex φ s T F s
20 19 anim1d φ s T t T F t F s F s t T F t F s
21 20 eximdv φ s s T t T F t F s s F s t T F t F s
22 16 21 mpd φ s F s t T F t F s
23 17 ffvelrnda φ t T F t
24 23 ex φ t T F t
25 2 24 ralrimi φ t T F t
26 19.41v s F s t T F t F s t T F t s F s t T F t F s t T F t
27 22 25 26 sylanbrc φ s F s t T F t F s t T F t
28 df-3an F s t T F t F s t T F t F s t T F t F s t T F t
29 28 exbii s F s t T F t F s t T F t s F s t T F t F s t T F t
30 27 29 sylibr φ s F s t T F t F s t T F t
31 nfcv _ t s
32 1 31 nffv _ t F s
33 32 nfel1 t F s
34 nfra1 t t T F t F s
35 nfra1 t t T F t
36 33 34 35 nf3an t F s t T F t F s t T F t
37 nfv t n
38 nfcv _ t <
39 nfcv _ t n
40 32 38 39 nfbr t F s < n
41 37 40 nfan t n F s < n
42 36 41 nfan t F s t T F t F s t T F t n F s < n
43 simpll3 F s t T F t F s t T F t n F s < n t T t T F t
44 simpr F s t T F t F s t T F t n F s < n t T t T
45 rsp t T F t t T F t
46 43 44 45 sylc F s t T F t F s t T F t n F s < n t T F t
47 simpll1 F s t T F t F s t T F t n F s < n t T F s
48 simplrl F s t T F t F s t T F t n F s < n t T n
49 48 nnred F s t T F t F s t T F t n F s < n t T n
50 simpl2 F s t T F t F s t T F t n F s < n t T F t F s
51 50 r19.21bi F s t T F t F s t T F t n F s < n t T F t F s
52 simplrr F s t T F t F s t T F t n F s < n t T F s < n
53 46 47 49 51 52 lelttrd F s t T F t F s t T F t n F s < n t T F t < n
54 53 ex F s t T F t F s t T F t n F s < n t T F t < n
55 42 54 ralrimi F s t T F t F s t T F t n F s < n t T F t < n
56 arch F s n F s < n
57 56 3ad2ant1 F s t T F t F s t T F t n F s < n
58 55 57 reximddv F s t T F t F s t T F t n t T F t < n
59 58 eximi s F s t T F t F s t T F t s n t T F t < n
60 30 59 syl φ s n t T F t < n
61 19.9v s n t T F t < n n t T F t < n
62 60 61 sylib φ n t T F t < n