Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmdvdsr.x | |
|
rhmdvdsr.m | |
||
rhmdvdsr.n | |
||
Assertion | rhmdvdsr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmdvdsr.x | |
|
2 | rhmdvdsr.m | |
|
3 | rhmdvdsr.n | |
|
4 | simpl1 | |
|
5 | simpl2 | |
|
6 | eqid | |
|
7 | 1 6 | rhmf | |
8 | 7 | ffvelcdmda | |
9 | 4 5 8 | syl2anc | |
10 | simpll1 | |
|
11 | simpr | |
|
12 | 7 | ffvelcdmda | |
13 | 10 11 12 | syl2anc | |
14 | 13 | ralrimiva | |
15 | 5 | adantr | |
16 | eqid | |
|
17 | eqid | |
|
18 | 1 16 17 | rhmmul | |
19 | 10 11 15 18 | syl3anc | |
20 | 19 | ralrimiva | |
21 | simpr | |
|
22 | 1 2 16 | dvdsr2 | |
23 | 22 | biimpac | |
24 | 21 5 23 | syl2anc | |
25 | r19.29 | |
|
26 | simpl | |
|
27 | simpr | |
|
28 | 27 | fveq2d | |
29 | 26 28 | eqtr3d | |
30 | 29 | reximi | |
31 | 25 30 | syl | |
32 | 20 24 31 | syl2anc | |
33 | r19.29 | |
|
34 | 14 32 33 | syl2anc | |
35 | oveq1 | |
|
36 | 35 | eqeq1d | |
37 | 36 | rspcev | |
38 | 37 | rexlimivw | |
39 | 34 38 | syl | |
40 | 6 3 17 | dvdsr | |
41 | 9 39 40 | sylanbrc | |