Metamath Proof Explorer


Theorem rhmdvdsr

Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses rhmdvdsr.x X = Base R
rhmdvdsr.m ˙ = r R
rhmdvdsr.n × ˙ = r S
Assertion rhmdvdsr F R RingHom S A X B X A ˙ B F A × ˙ F B

Proof

Step Hyp Ref Expression
1 rhmdvdsr.x X = Base R
2 rhmdvdsr.m ˙ = r R
3 rhmdvdsr.n × ˙ = r S
4 simpl1 F R RingHom S A X B X A ˙ B F R RingHom S
5 simpl2 F R RingHom S A X B X A ˙ B A X
6 eqid Base S = Base S
7 1 6 rhmf F R RingHom S F : X Base S
8 7 ffvelrnda F R RingHom S A X F A Base S
9 4 5 8 syl2anc F R RingHom S A X B X A ˙ B F A Base S
10 simpll1 F R RingHom S A X B X A ˙ B c X F R RingHom S
11 simpr F R RingHom S A X B X A ˙ B c X c X
12 7 ffvelrnda F R RingHom S c X F c Base S
13 10 11 12 syl2anc F R RingHom S A X B X A ˙ B c X F c Base S
14 13 ralrimiva F R RingHom S A X B X A ˙ B c X F c Base S
15 5 adantr F R RingHom S A X B X A ˙ B c X A X
16 eqid R = R
17 eqid S = S
18 1 16 17 rhmmul F R RingHom S c X A X F c R A = F c S F A
19 10 11 15 18 syl3anc F R RingHom S A X B X A ˙ B c X F c R A = F c S F A
20 19 ralrimiva F R RingHom S A X B X A ˙ B c X F c R A = F c S F A
21 simpr F R RingHom S A X B X A ˙ B A ˙ B
22 1 2 16 dvdsr2 A X A ˙ B c X c R A = B
23 22 biimpac A ˙ B A X c X c R A = B
24 21 5 23 syl2anc F R RingHom S A X B X A ˙ B c X c R A = B
25 r19.29 c X F c R A = F c S F A c X c R A = B c X F c R A = F c S F A c R A = B
26 simpl F c R A = F c S F A c R A = B F c R A = F c S F A
27 simpr F c R A = F c S F A c R A = B c R A = B
28 27 fveq2d F c R A = F c S F A c R A = B F c R A = F B
29 26 28 eqtr3d F c R A = F c S F A c R A = B F c S F A = F B
30 29 reximi c X F c R A = F c S F A c R A = B c X F c S F A = F B
31 25 30 syl c X F c R A = F c S F A c X c R A = B c X F c S F A = F B
32 20 24 31 syl2anc F R RingHom S A X B X A ˙ B c X F c S F A = F B
33 r19.29 c X F c Base S c X F c S F A = F B c X F c Base S F c S F A = F B
34 14 32 33 syl2anc F R RingHom S A X B X A ˙ B c X F c Base S F c S F A = F B
35 oveq1 y = F c y S F A = F c S F A
36 35 eqeq1d y = F c y S F A = F B F c S F A = F B
37 36 rspcev F c Base S F c S F A = F B y Base S y S F A = F B
38 37 rexlimivw c X F c Base S F c S F A = F B y Base S y S F A = F B
39 34 38 syl F R RingHom S A X B X A ˙ B y Base S y S F A = F B
40 6 3 17 dvdsr F A × ˙ F B F A Base S y Base S y S F A = F B
41 9 39 40 sylanbrc F R RingHom S A X B X A ˙ B F A × ˙ F B