Metamath Proof Explorer


Theorem ringcom

Description: Commutativity of the additive group of a ring. (See also lmodcom .) This proof requires the existence of a multiplicative identity, and the existence of additive inverses. Therefore, this proof is not applicable for semirings. (Contributed by Gérard Lang, 4-Dec-2014) (Proof shortened by AV, 1-Feb-2025)

Ref Expression
Hypotheses ringacl.b B=BaseR
ringacl.p +˙=+R
Assertion ringcom RRingXBYBX+˙Y=Y+˙X

Proof

Step Hyp Ref Expression
1 ringacl.b B=BaseR
2 ringacl.p +˙=+R
3 1 2 ringcomlem RRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y
4 simp1 RRingXBYBRRing
5 4 ringgrpd RRingXBYBRGrp
6 simp2 RRingXBYBXB
7 1 2 ringacl RRingXBXBX+˙XB
8 4 6 6 7 syl3anc RRingXBYBX+˙XB
9 simp3 RRingXBYBYB
10 1 2 grpass RGrpX+˙XBYBYBX+˙X+˙Y+˙Y=X+˙X+˙Y+˙Y
11 5 8 9 9 10 syl13anc RRingXBYBX+˙X+˙Y+˙Y=X+˙X+˙Y+˙Y
12 1 2 ringacl RRingXBYBX+˙YB
13 1 2 grpass RGrpX+˙YBXBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
14 5 12 6 9 13 syl13anc RRingXBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
15 3 11 14 3eqtr4d RRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y
16 1 2 ringacl RRingX+˙XBYBX+˙X+˙YB
17 4 8 9 16 syl3anc RRingXBYBX+˙X+˙YB
18 1 2 ringacl RRingX+˙YBXBX+˙Y+˙XB
19 4 12 6 18 syl3anc RRingXBYBX+˙Y+˙XB
20 1 2 grprcan RGrpX+˙X+˙YBX+˙Y+˙XBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙YX+˙X+˙Y=X+˙Y+˙X
21 5 17 19 9 20 syl13anc RRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙YX+˙X+˙Y=X+˙Y+˙X
22 15 21 mpbid RRingXBYBX+˙X+˙Y=X+˙Y+˙X
23 1 2 grpass RGrpXBXBYBX+˙X+˙Y=X+˙X+˙Y
24 5 6 6 9 23 syl13anc RRingXBYBX+˙X+˙Y=X+˙X+˙Y
25 1 2 grpass RGrpXBYBXBX+˙Y+˙X=X+˙Y+˙X
26 5 6 9 6 25 syl13anc RRingXBYBX+˙Y+˙X=X+˙Y+˙X
27 22 24 26 3eqtr3d RRingXBYBX+˙X+˙Y=X+˙Y+˙X
28 1 2 ringacl RRingYBXBY+˙XB
29 28 3com23 RRingXBYBY+˙XB
30 1 2 grplcan RGrpX+˙YBY+˙XBXBX+˙X+˙Y=X+˙Y+˙XX+˙Y=Y+˙X
31 5 12 29 6 30 syl13anc RRingXBYBX+˙X+˙Y=X+˙Y+˙XX+˙Y=Y+˙X
32 27 31 mpbid RRingXBYBX+˙Y=Y+˙X