Description: Commutativity of the additive group of a ring. (See also lmodcom .) This proof requires the existence of a multiplicative identity, and the existence of additive inverses. Therefore, this proof is not applicable for semirings. (Contributed by Gérard Lang, 4-Dec-2014) (Proof shortened by AV, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringacl.b | |
|
ringacl.p | |
||
Assertion | ringcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringacl.b | |
|
2 | ringacl.p | |
|
3 | 1 2 | ringcomlem | |
4 | simp1 | |
|
5 | 4 | ringgrpd | |
6 | simp2 | |
|
7 | 1 2 | ringacl | |
8 | 4 6 6 7 | syl3anc | |
9 | simp3 | |
|
10 | 1 2 | grpass | |
11 | 5 8 9 9 10 | syl13anc | |
12 | 1 2 | ringacl | |
13 | 1 2 | grpass | |
14 | 5 12 6 9 13 | syl13anc | |
15 | 3 11 14 | 3eqtr4d | |
16 | 1 2 | ringacl | |
17 | 4 8 9 16 | syl3anc | |
18 | 1 2 | ringacl | |
19 | 4 12 6 18 | syl3anc | |
20 | 1 2 | grprcan | |
21 | 5 17 19 9 20 | syl13anc | |
22 | 15 21 | mpbid | |
23 | 1 2 | grpass | |
24 | 5 6 6 9 23 | syl13anc | |
25 | 1 2 | grpass | |
26 | 5 6 9 6 25 | syl13anc | |
27 | 22 24 26 | 3eqtr3d | |
28 | 1 2 | ringacl | |
29 | 28 | 3com23 | |
30 | 1 2 | grplcan | |
31 | 5 12 29 6 30 | syl13anc | |
32 | 27 31 | mpbid | |