Metamath Proof Explorer


Theorem riotasv2d

Description: Value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ). Special case of riota2f . (Contributed by NM, 2-Mar-2013)

Ref Expression
Hypotheses riotasv2d.1 yφ
riotasv2d.2 φ_yF
riotasv2d.3 φyχ
riotasv2d.4 φD=ιxA|yBψx=C
riotasv2d.5 φy=Eψχ
riotasv2d.6 φy=EC=F
riotasv2d.7 φDA
riotasv2d.8 φEB
riotasv2d.9 φχ
Assertion riotasv2d φAVD=F

Proof

Step Hyp Ref Expression
1 riotasv2d.1 yφ
2 riotasv2d.2 φ_yF
3 riotasv2d.3 φyχ
4 riotasv2d.4 φD=ιxA|yBψx=C
5 riotasv2d.5 φy=Eψχ
6 riotasv2d.6 φy=EC=F
7 riotasv2d.7 φDA
8 riotasv2d.8 φEB
9 riotasv2d.9 φχ
10 elex AVAV
11 8 adantr φAVEB
12 9 adantr φAVχ
13 eleq1 y=EyBEB
14 13 adantl φy=EyBEB
15 14 5 anbi12d φy=EyBψEBχ
16 6 eqeq2d φy=ED=CD=F
17 15 16 imbi12d φy=EyBψD=CEBχD=F
18 17 adantlr φAVy=EyBψD=CEBχD=F
19 4 7 riotasvd φAVyBψD=C
20 nfv yAV
21 1 20 nfan yφAV
22 nfcvd φAV_yE
23 nfvd φyEB
24 23 3 nfand φyEBχ
25 nfra1 yyBψx=C
26 nfcv _yA
27 25 26 nfriota _yιxA|yBψx=C
28 1 4 nfceqdf φ_yD_yιxA|yBψx=C
29 27 28 mpbiri φ_yD
30 29 2 nfeqd φyD=F
31 24 30 nfimd φyEBχD=F
32 31 adantr φAVyEBχD=F
33 11 18 19 21 22 32 vtocldf φAVEBχD=F
34 11 12 33 mp2and φAVD=F
35 10 34 sylan2 φAVD=F