Metamath Proof Explorer


Theorem rlimi

Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015)

Ref Expression
Hypotheses rlimi.1 φzABV
rlimi.2 φR+
rlimi.3 φzABC
Assertion rlimi φyzAyzBC<R

Proof

Step Hyp Ref Expression
1 rlimi.1 φzABV
2 rlimi.2 φR+
3 rlimi.3 φzABC
4 breq2 x=RBC<xBC<R
5 4 imbi2d x=RyzBC<xyzBC<R
6 5 rexralbidv x=RyzAyzBC<xyzAyzBC<R
7 rlimf zABCzAB:domzAB
8 3 7 syl φzAB:domzAB
9 eqid zAB=zAB
10 9 fmpt zABVzAB:AV
11 1 10 sylib φzAB:AV
12 11 fdmd φdomzAB=A
13 12 feq2d φzAB:domzABzAB:A
14 8 13 mpbid φzAB:A
15 9 fmpt zABzAB:A
16 14 15 sylibr φzAB
17 rlimss zABCdomzAB
18 3 17 syl φdomzAB
19 12 18 eqsstrrd φA
20 rlimcl zABCC
21 3 20 syl φC
22 16 19 21 rlim2 φzABCx+yzAyzBC<x
23 3 22 mpbid φx+yzAyzBC<x
24 6 23 2 rspcdva φyzAyzBC<R